• Title/Summary/Keyword: networked systems

Search Result 270, Processing Time 0.023 seconds

A Smart Machining System (스마트 가공 시스템)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2015
  • Globalization, unpredictable markets, increased products customization and frequent changes in products, production technologies and machining systems have become a complexity in today's manufacturing environment. One key strategy for coping with the evolution of this situation is to develop or apply an enable technology such as intelligent manufacturing. Intelligent manufacturing system (IMS) is characterized by decentralized, distributed, networked compositions of heterogeneous and autonomous systems. The model of IMS is inherited from the organization of the living systems in biology and nature so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and selfhealing. To prove this concept, an innovative system with applying the advanced information and communication technology such as internet of things, cognitive agent are proposed to integrate, organize and allocate the machining resources. Innovative system is essential for modern machining system to flexibly and quickly adapt to new challenges of manufacturing environment.

Robust Real-Time Wireless Control Platform Compensating for Packet Loss (패킷 손실에 강인한 원격 실시간 무선제어 플랫폼)

  • Choi, Rock-Hyun;Lee, Sang-Cheol;Yoo, Joon-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.768-773
    • /
    • 2012
  • Packet loss compensation techniques are increasingly important to stable remote control over wireless communication in WNCS (Wireless Networked Control Systems). Its time varying channels, limited bandwidth, interference, and poor signal not only leads to packet loss or latency, but also can negatively affect performance and system stability. This paper presents a compensation technique exploiting an EWMA (Exponentially Weighed Moving Average)-based value estimator to clarify the influence of packet loss on the overall WNCS behavior. As an example of actuator to be remotely controlled, a rotary-type inverted pendulum has been considered, and modeled. Performance evaluation results through Matlab/Simulink and Truetime co-simulation confirm the superiority of the proposed value estimation method over previous approaches.

Design of Lyapunov Theory based State Feedback Controller for Time-Delay Systems (시간지연 시스템을 위한 리아푸노브 이론 기반 상태 피드백 제어기 설계)

  • Cho, Hyun Cheol;Shin, Chan Bai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.95-100
    • /
    • 2013
  • This paper presents a new state feedback control approach for communication networks based control systems in which control input and output observation time-delay natures are generally occurred in practice. We first establish a generic state feedback control framework based on well-known linear system theory. A maximum time-delay value which allows critical stability of whole control system are defined to make a positive definite Lyapunov function which is mathematically composed of controlled system states. We analytically derive its control parameters by using a steepest descent optimization method in order to guarantee a stability condition through Lyapunov theory. Computer simulation is numerically carried out for demonstrating reliability of the proposed NCS algorithm and a comparative study is accomplished to prove its superiority for which the traditional control approach for NCS is made use of under same simulation scenarios.

A Probe Detection based on Private Cloud using BlockChain (블록체인을 적용한 사설 클라우드 기반 침입시도탐지)

  • Lee, Seyul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.11-17
    • /
    • 2018
  • IDS/IPS and networked computer systems are playing an increasingly important role in our society. They have been the targets of a malicious attacks that actually turn into intrusions. That is why computer security has become an important concern for network administrators. Recently, various Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems is useful for existing intrusion patterns on standard-only systems. Therefore, probe detection of private clouds using BlockChain has become a major security protection technology to detection potential attacks. In addition, BlockChain and Probe detection need to take into account the relationship between the various factors. We should develop a new probe detection technology that uses BlockChain to fine new pattern detection probes in cloud service security in the end. In this paper, we propose a probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) based on service security using BlockChain technology.

Performance Analysis of Cluster File System $SANique^{TM}$ based on Storage Area Network (SAN 기반 클러스터 파일 시스템 $SANique^{TM}$의 성능평가 및 분석)

  • Lee, Kyu-Woong
    • Journal of Information Technology Services
    • /
    • v.7 no.1
    • /
    • pp.195-204
    • /
    • 2008
  • As the dependency to network system and demands of efficient storage systems rapidly grows in every networking filed, the current trends initiated by explosive networked data grow due to the wide-spread of internet multimedia data and internet requires a paradigm shift from computing-centric to data-centric in storage systems. Furthermore, the new environment of file systems such as SAN(Storage Area Network) is adopted to the existing storage paradigm for providing high availability and efficient data access. We describe the design issues and system components of $SANique^{TM}$, which is the cluster file system based on SAN environment. We, especially, present the comparative results of performance analysis for the intensive I/O test by using the DBMSs that are operated at the top of cluster file system $SANique^{TM}$, EXT3 and NFS respectively.

Implementation of Ubiquitous Robot in a Networked Environment (네트워크 환경에서 유비쿼터스 로봇의 구현)

  • Kim Jong-Hwan;Lee Ju-Jang;Yang Hyun-Seng;Oh Yung-Hwan;Yoo Chang-Dong;Lee Jang-Myung;Lee Min-Cheol;Kim Myung-Seok;Lee Kang-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1051-1061
    • /
    • 2005
  • This paper proposes a ubiquitous robot, Ubibot, as an integration of three forms of robots: Software robot (Sobot), Embedded robot (Embot) and Mobile robot (Mobot). A Sobot is a virtual robot, which has the ability to move to any place or connect to any device through a network in order to overcome spatial limitations. It has the capacity to interpret the context and thus interact with the user. An Embot is embedded within the environment or within physical robots. It can recognize the locations of and authenticate the user or robot, and synthesize sensing information. Also it has the ability to deliver essential information to the user or other components of Ubibot by using various types of output devices. A Mobot provides integrated mobile service. In addition, Middleware intervenes different protocols between Sobot, Embot, and Mobot in order to incorporate them reliably. The services provided by Ubibot will be seamless, calm and context-aware based on the combination of these components. This paper presents the basic concepts and structure of Ubibot. A Sobot, called Rity, is introduced in order to investigate the usability of the proposed concepts. Rity is a 3D synthetic character which exists in the virtual world, has a unique IP address and interacts with human beings through Vision Embot, Sound Embot, Position Embot and Voice Embot. Rity is capable of moving into a Mobot and controlling its mobility. In doing so, Rity can express its behavior in the virtual world, for example, wondering or moving about in the real world. The experimental results demonstrate the feasibility of implementing a Ubibot in a networked environment.

Design and Implementation of a Low-cost Uncompressed Internet HDTV System (비압축 인터넷 HDTV 시스템의 저비용 설계 및 구현)

  • Jo, Jin-Yong;Chae, Jong-Kwon;Kim, Jong-Won;Byeon, Ok-Hwan;Kwak, Jai-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.71-82
    • /
    • 2007
  • Recent advances in optical-network technologies have led to the advent of broadband networks reaching 10 Gbps. The increase of available network bandwidth envisions wide-spread use of broadband applications such as uncompressed Internet HDTV, which would be a cutting-edge application for networked collaborations. Despite of breakthroughs in high-performance systems and networks, expensiveness blocks wide-range deployments of uncompressed Internet HDTV systems. In this paper, we propose a low-cost uncompressed Internet HDTV system and discuss its software architecture in depth. We conducted several network-based experiments utilizing a research network test-bed to evaluate the performance of the proposed system.

The impact of technology on resource sharing (정보기술이 자원공유에 미치는 영향)

  • 이영자
    • Journal of Korean Library and Information Science Society
    • /
    • v.22
    • /
    • pp.205-244
    • /
    • 1995
  • Originally the concept of the traditional resource sharing has been discussed in the context of bibliographic materials, and has been labor-intensive and high-cost activities. The technology has had a great impact on such pattern of the resource sharing, and has expanded the limited scope of the traditional concept into the sharing of library information in the levels of local, regional and national systems, and expertise, materials, facilities, equipments and personnels of the library system. While the traditional circulation service as a basic method to share library materials by users can provide the resource to a single person at a time, the electronic resource can be shared, by multi-users at a time anytime anywhere. The maximization of the electronic resource sharing requires that publishing process should be fundamentally changed and articles, books, chapters, speech manuscripts, music scores, maps, sound, and other formats of materials should be prepared in machine readable format. This study examined the positive effects of the technology on the resource sharing, but not investigate the concrete and complex problems as to the cost, guidelines, detailed procedures, design details, and intellectual properties and protection involved in the resource sharing. Some findings extracted from the study can be summarized as follows; (1) ILL will lose its meaning as a method to share the materials if they are all in the electronic format and the phrase 'networked information resource' becomes omnipresent. (2) The technology keeps on changing the concept of resource sharing. Today, the scope of resource sharing not only encompasses the sharing of the primary and secondary materials but also the sharing of the processings(eg. cataloging), expertise, user education, special facilities, and the integrated automated library systems. (3) The sharing of the networked resource will be a method to provide better services for library users in the low cost. (4) The a n.0, pplication of the technology to the resource sharing should be focus on the method which allows an end-users to do the direct access to the needed materials, and to be delivered the primary document as soon as possible.

  • PDF

Enhancing Cyber-Physical Systems Security: A Comprehensive SRE Approach for Robust CPS Methodology

  • Shafiq ur Rehman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.40-52
    • /
    • 2024
  • Cyber-Physical Systems (CPS) are introduced as complex, interconnected systems that combine physical components with computational elements and networking capabilities. They bridge the gap between the physical world and the digital world, enabling the monitoring and control of physical processes through embedded computing systems and networked communication. These systems introduce several security challenges. These challenges, if not addressed, can lead to vulnerabilities that may result in substantial losses. Therefore, it is crucial to thoroughly examine and address the security concerns associated with CPS to guarantee the safe and reliable operation of these systems. To handle these security concerns, different existing security requirements methods are considered but they were unable to produce required results because they were originally developed for software systems not for CPS and they are obsolete methods for CPS. In this paper, a Security Requirements Engineering Methodology for CPS (CPS-SREM) is proposed. A comparison of state-of-the-art methods (UMLSec, CLASP, SQUARE, SREP) and the proposed method is done and it has demonstrated that the proposed method performs better than existing SRE methods and enabling experts to uncover a broader spectrum of security requirements specific to CPS. Conclusion: The proposed method is also validated using a case study of the healthcare system and the results are promising. The proposed model will provide substantial advantages to both practitioners and researcher, assisting them in identifying the security requirements for CPS in Industry 4.0.

Autonomy for Smart Manufacturing (스마트 매뉴팩처링을 위한 자율화)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.287-295
    • /
    • 2014
  • Smart manufacturing (SM) considered as a new trend of modern manufacturing helps to meet objectives associated with the productivity, quality, cost and competiveness. It is characterized by decentralized, distributed, networked compositions of autonomous systems. The model of SM is inherited from the organization of the living systems in biology and nature such as ant colony, school of fish, bee's foraging behaviors, and so on. In which, the resources of the manufacturing system are considered as biological organisms, which are autonomous entities so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and self-healing. To prove this concept, a cloud machining system is considered as research object in which internet of things and cloud computing are used to integrate, organize and allocate the machining resources. Artificial life tools are used for cooperation among autonomous elements in the cloud machining system.