• Title/Summary/Keyword: network-based handover

Search Result 258, Processing Time 0.031 seconds

PCISS Scheme for Minimize Prove Delay in Wireless Mesh Networks (무선 메쉬 네트워크 환경에서 프로브 지연을 최소화한 PCISS 기법)

  • Cho, Young-Bok;Lee, Sang-Ho
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • Recently Wireless Communication technologies are widely used in Small And Medium Business fields. Wireless mesh networks have been studied as the next generation technology to solve problem of conventional wireless networks. Wireless mesh network uses a 802.11 when make up of network. mesh clients occurs Hard handover moving between ones. This increases the handover latency of the network mobility is a very great issues. Consequently, this paper propose a channel information previously methods to reduce the handover latency selective channels. Proposed scheme accounts for more than 90% of the probe delay to minimize the client had to move the mesh based on the old channel to retrieve information. Through simulation, the proposed scheme had shorter handover delay time than transitional full scan and selective scan. Through results of evaluation, the suggest PCISS scheme more fast 6.5% than transitional scheme.

  • PDF

QoS Provisioning for Forced Inter-System Handover (강제 시스템간 핸드오버 시 QoS 보장 방안)

  • Lee, Moon-Ho;Lee, Jong-Chan
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.89-98
    • /
    • 2010
  • In the heterogeneous system of various wired or wireless network with IP-based backbone, the continuities of agreedon QoS for multimedia services should be guaranteed regardless of network types and terminal mobility through seamless vertical handover. This paper proposes a QoS provisioning mechanism called D-ISHO which guarantees the continuities of agreed-on QoS and seamless for multimedia services by considering both such characteristics as delay, loss rate and jitter per each service and such status as available band-width, call arrival rate and data transmission rate during the vertical handover. Simulation is done for performance analysis with the measure of handover failure rate and packet loss rate.

Network-based Mobility Control in Mobile LISP Networks (이동 LISP망에서 네트워크 기반 이동성 제어 기법)

  • Choi, Sang-Il;Kim, Ji-In;Koh, Seok-Joo
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.339-342
    • /
    • 2011
  • This paper proposes a network-based mobility control scheme in wireless/mobile networks, which is based on the Locator-Identifier Separation Protocol (LISP). Compared to the existing LISP mobility scheme, the proposed scheme is featured by the following two points: 1) each LISP Tunnel Router (TR) is implemented at the first-hop access router that mobile nodes are attached to, and 2) for handover support, the LISP Routing Locator (RLOC) update operation is performed between Ingress TR and Egress TR. By numerical analysis, it is shown that the proposed scheme can reduce the handover latency much more than the other candidate schemes.

Performance Evaluation of Improved Fast PMIPv6-Based Network Mobility for Intelligent Transportation Systems

  • Ryu, Seonggeun;Choi, Ji-Woong;Park, Kyung-Joon
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.142-152
    • /
    • 2013
  • The network mobility basic support (NEMO BS) protocol has been investigated to provide Internet connectivity for a group of nodes, which is suitable for intelligent transportation systems (ITS) applications. NEMO BS often increases the traffic load and handover latency because it is designed on the basis of mobile Internet protocol version 6 (MIPv6). Therefore, schemes combining proxy MIPv6 with NEMO (P-NEMO) have emerged to solve these problems. However, these schemes still suffer from packet loss and long handover latency during handover. Fast P-NEMO (FP-NEMO) has emerged to prevent these problems. Although the FP-NEMO accelerates handover, it can cause a serious tunneling burden between the mobile access gateways (MAGs) during handover. This problem becomes more critical as the traffic between the MAGs increases. Therefore, we propose a scheme for designing an improved FP-NEMO (IFP-NEMO) to eliminate the tunneling burden by registering a new address in advance. When the registration is completed before the layer 2 handover, the packets are forwarded to the new MAG directly and thereby the IFP-NEMO avoids the use of the tunnel between the MAGs during handover. For the evaluation of the performance of the IFP-NEMO compared with the FP-NEMO, we develop an analytical framework for fast handovers on the basis of P-NEMO. Finally, we demonstrate that the IFP-NEMO outperforms the FP-NEMO through numerical results.

A Study on Mobility Control Method for Multi-Interface on Hybrid Networks (다중인터페이스의 이종망간 이동성 제어 방법 연구)

  • Choi, Ji-hoon;Kim, Dong-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.76-79
    • /
    • 2009
  • Recently there has been much effort, in both academia and industry, to integrate a plethora of wireless technologies in order to provide seamless connection to mobile users. To support seamless connection on terminal needs fast handover function and location management function. Especially, Performing fast handover has to interact with function of datalink layer and mobility based IP. In this paper, we propose a handover decision mechanism using MIH( Media Independent Handover) in hybrid networks to reduce the delay of transmission for data.

  • PDF

QoE-Aware Mobility Management Scheme

  • Kim, Moon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.137-146
    • /
    • 2016
  • In this paper, we introduce a quality of experience (QoE)-provisioning mobility management scheme. The emphasis is on a mobility-aware QoE solution enabling network components to recognize the mobility pattern of an end-user and to prepare a handover in advance. We further focus on an energy-adaptive QoE solution based on the energy profile providing the preferred pattern of energy consumption and an energy preference check engine determining whether the provision of the service that the end-user requested is suitable to QoE or not. Lastly, we concentrate on a network-based intelligent mobility management scheme adopting the calm service and the balance. Consequently, we conclude that the proposed schemes improve the handover latency, QoE metrics, and energy efficiency simultaneously.

SDN Based Mobility in Enterprise Wireless Network (엔터프라이즈 무선네트워크에서 SDN 기반 이동성 연구)

  • Challa, Rajesh;Yeom, Sanggil;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.335-336
    • /
    • 2015
  • Seamless mobility is one of the most crucial feature of telecommunication industry. Researches are going on in full swing to deal with this feature in most efficient manner. Software Defined Networking (SDN) is seen as the next generation paradigm which can facilitate seamless mobility across heterogeneous networks by segregating the control plane and data plane functionalities, and logically centralizing the control plane. In this paper, we propose a simplified Layer 2 handover mechanism for enterprise wireless networks, based on SDN framework. We present a network assisted L2 handover method using the IEEE 802.21 Media Independent Handover (MIH) protocol and SDN concepts, to achieve seamless mobility across heterogeneous networks.

An Enhanced Fast Handover Scheme for Proxy Mobile IPv6 (Proxy Mobile IPv6를 위한 개선된 신속한 핸드오버 방안)

  • Kang, Ju-Eun;Kum, Dong-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • In a network-based approach such as Proxy Mobile IPv6 (PMIPv6), the serving network controls the mobility management on behalf of a Mobile Node (MN), thereby eliminating a MN from any mobility-related signaling. Although PMIPv6 is being standardized by the IETF NetLMM WG, PMIPv6 still suffers from a lengthy handover latency and the on-the-fly packet loss during a handover. Therefore, this paper presents an enhanced fast handover scheme for PMIPv6. The proposed handover scheme uses the Neighbor Discovery message of IPv6 to reduce the handover latency and packet buffering at the Mobile Access Gateway (MAG) to avoid the on-the-fly packet loss during a handover. In addition, it uses an additional packet buffering at the Local Mobility Anchor (LMA) to solve the packet ordering problem. We evaluate the performance of the proposed handover scheme using both analytical model and simulation. The numerical analysis shows that the proposed scheme has a relatively shorter handover latency. Simulation results demonstrate that the proposed scheme could avoid the on-the-fly packet loss and ensure the packet sequence.

A Comparative Analysis on the Handover Latencies of IPv6 Mobility Support Protocols (IPv6 이동성 지원 프로토콜들의 핸드오버 지연시간에 대한 비교 분석)

  • Kong, Ki-Sik
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.341-348
    • /
    • 2010
  • Unlike host-based IPv6 mobility support protocols such as Mobile IPv6 (MIPv6), Hierarchical Mobile IPv6 (HMIPv6), and Fast handover for Mobile IPv6 (FMIPv6), Proxy Mobile IPv6 (PMIPv6) is expected to accelerate the real deployment of IPv6 mobility support protocol by using only collaborative operations between the network entities without mobile node (MN) being involved. In this paper, we analyze and compare the handover latency of network-based IPv6 mobility support protocol (i.e., PMIPv6) with the representative host-based IPv6 mobility support protocols such as MIPv6, HMIPv6, and FMIPv6. Analytical results show that the handover latency of PMIPv6 is considerably lower than those of MIPv6 and HMIPv6, and the handover latency of PMIPv6 becomes lower than that of FMIPv6 in case the wireless link delay is greater than the delay between mobile access gateway (MAG) and local mobility anchor (LMA).