• Title/Summary/Keyword: network traffic prediction

Search Result 180, Processing Time 0.026 seconds

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

Short-Term Prediction of Travel Time Using DSRC on Highway (DSRC 자료를 이용한 고속도로 단기 통행시간 예측)

  • Kim, Hyungjoo;Jang, Kitae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2465-2471
    • /
    • 2013
  • This paper develops a travel time prediction algorithm that can be used for real-time application. The algorithm searches for the most similar pattern in historical travel time database as soon as a series of real-time data become available. Artificial neural network approach is then taken to forecast travel time in the near future. To examine the performance of this algorithm, travel time data from Gyungbu Highway were obtained and the algorithm is applied. The evaluation shows that the algorithm could predict travel time within 4% error range if comparable patterns are available in the historical travel time database. This paper documents the detailed algorithm and validation procedure, thereby furnishing a key to generating future travel time information.

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

Delay-based Rate Control for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 지연 시간 기반 전송률 제어)

  • Song Yong-Hon;Kim Nam-Yun;Lee Bong-Gyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9B
    • /
    • pp.829-837
    • /
    • 2006
  • Due to the internet network congestion, packets may be dropped or delayed at routers. This phenomenon degrades the quality of streaming applications that require high QoS requirements. The proposed algorithm in this paper, called DBRC(Delay-Based Rate Control), tries to cause router queue occupancy to reach a steady state or equilibrium by throttling the transmission rate of the multimedia traffics when network delays tend to increase and also probing for more bandwidth when network delays tend to decrease. Simulation results show that the proposed algorithm provides smooth transmission rate, nearly constant delay and low packet loss rates, compared with TFRC(TCP Friendly Rate Control) that is one of dominant multimedia congestion control algorithms.

QoS control for real-time VBR video traffic using prediction-based dynamic resource allocation architecture (예측 기반 동적 자원할당 구조를 이용한 실시간 VBR 비디오 트래픽의 QoS 제어 방법)

  • Yoo, Sang-Jo;Hong, Sung-Hoon;Kang, Sung-Won;Hong, Kyoung-Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1C
    • /
    • pp.11-20
    • /
    • 2002
  • In this paper, we propose an efficient quality providing scheme to satisfy a diversify combination of delay bound and loss ratio requirements from users by a predictive dynamic resource allocation method for real-time video applications. For utilizing the network resources more efficiently while meeting the service requirements, we adjust the resources based on the predicted traffic and the currently provided quality level. We developed a simple delayed-packet counter updating scheme for real time QoS monitoring. Simulation results show that our proposed method can provide an accurate and flexible quality control.

Prediction-Based Reliable Data Forwarding Method in VANET (차량 네트워크에서 예측 기반의 안정적 데이터 포워딩 기법)

  • Kim, Minho;Joo, Changhee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.128-139
    • /
    • 2017
  • Vehicular Ad hoc Network (VANET) is one of technologies to realize various ITS services for safe driving and efficient traffic control. However, data delivery in VANETs is complicated due to high mobility and unreliable wireless transmission. In this paper, we develop a novel forwarding scheme to deliver packets in a reliable and timely manner. The proposed forwarding scheme uses traffic statistics to predict the encounter of two vehicles, and optimize its forwarding decision by taking into consideration the probability of successful transmission between them at the encounter place. We evaluate our scheme through simulations and show that our proposed scheme provides reliable data delivery in VANETs.

A Condition Rating Method of Bridges using an Artificial Neural Network Model (인공신경망모델을 이용한 교량의 상태평가)

  • Oh, Soon-Taek;Lee, Dong-Jun;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • It is increasing annually that the cost for bridge Maintenance Repair & Rehabilitation (MR&R) in developed countries. Based on Intelligent Technology, Bridge Management System (BMS) is developed for optimization of Life Cycle Cost (LCC) and reliability to predict long-term bridge deteriorations. However, such data are very limited amongst all the known bridge agencies, making it difficult to reliably predict future structural performances. To alleviate this problem, an Artificial Neural Network (ANN) based Backward Prediction Model (BPM) for generating missing historical condition ratings has been developed. Its reliability has been verified using existing condition ratings from the Maryland Department of Transportation, USA. The function of the BPM is to establish the correlations between the known condition ratings and such non-bridge factors as climate and traffic volumes, which can then be used to obtain the bridge condition ratings of the missing years. Since the non-bridge factors used in the BPM can influence the variation of the bridge condition ratings, well-selected non-bridge factors are critical for the BPM to function effectively based on the minimized discrepancy rate between the BPM prediction result and existing data (deck; 6.68%, superstructure; 6.61%, substructure; 7.52%). This research is on the generation of usable historical data using Artificial Intelligence techniques to reliably predict future bridge deterioration. The outcomes (Long-term Bridge deterioration Prediction) will help bridge authorities to effectively plan maintenance strategies for obtaining the maximum benefit with limited funds.

Effects of Road and Traffic Characteristics on Roadside Air Pollution (도로환경요인이 도로변 대기오염에 미치는 영향분석)

  • Jo, Hye-Jin;Choe, Dong-Yong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.139-146
    • /
    • 2009
  • While air pollutants emission caused by the traffic is one of the major sources, few researches have done. This study investigated the extent to which traffic and road related characteristics such as traffic volumes, speeds and road weather data including wind speed, temperature and humidity, as well as the road geometry affect the air pollutant emission. We collected the real time air pollutant emission data from Seoul automatic stations and real time traffic volume counts as well as the road geometry. The regression air pollutant emission models were estimated. The results show followings. First, the more traffic volume increase, the more pollutant emission increase. The more vehicle speed increase, the more measurement quantity of pollutant decrease. Secondly, as the wind speed, temperature, and humidity increase, the amount of air pollutant is likely to decrease. Thirdly, the figure of intersections affects air pollutant emission. To verify the estimated models, we compared the estimates of the air pollutant emission with the real emission data. The result show the estimated results of Chunggae 4 station has the most reliable data compared with the others. This study is differentiated in the way the model used the real time air pollutant emission data and real time traffic data as well as the road geometry to explain the effects of the traffic and road characteristics on air quality.