• Title/Summary/Keyword: network coverage

Search Result 602, Processing Time 0.022 seconds

Abdominal-based adipocutaneous advancement flap for reconstructing inguinal defects with contraindications to standard reconstructive approaches: a simple and safe salvage reconstructive option

  • Schaffer, Clara;Haselbach, Daniel;Schiraldi, Luigi;Sorelius, Karl;Kalbermatten, Daniel F.;Raffoul, Wassim;di Summa, Pietro G.
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.395-403
    • /
    • 2021
  • Background Groin wounds occurring after vascular surgical site infection, oncologic resection, or occasionally orthopedic surgery and trauma may represent a surgical challenge. Reconstruction of these defects by the usual workhorse flaps may be contraindicated following previous surgery and in patients with lower limb lymphedema or extreme morbidity. Methods This study included 15 consecutive patients presenting with inguinal wounds after vascular or general surgery that required debridement and soft tissue coverage. All cases had absolute or relative contraindications to conventional reconstructive techniques, including a compromised deep femoral artery network, limb lymphedema, scarring of potential flap harvesting sites, or poor overall condition. Abdominal adipocutaneous excess enabled the performance of adipocutaneous advancement flaps in an abdominoplasty-like fashion. Immediate and long-term outcomes were analyzed. Results Soft tissue coverage was effective in all cases. Two patients required re-intervention due to flap-related complications (venous congestion and partial flap necrosis). All patients fully recovered over a mean±standard deviation follow-up of 2.4±1.5 years. Conclusions Abdominal flaps can be an effective and simple alternative technique for inguinal coverage with reproducible outcomes. In our experience, the main indications are a compromised deep femoral artery network and poor thigh tissue quality. Relative contraindications, such as previous open abdominal surgery, should be considered.

Evaluating Relay Beamwidth for Enhanced Coverage and Data Rates in Buoy-Assisted Maritime Communications

  • Kyeongjea Lee;Tae-Woo Kim;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.922-937
    • /
    • 2024
  • Maritime activities are on the rise, there is a growing demand for high-quality communication services that can cover larger areas. However, the transmission of high data rates to maritime users is challenging due to path loss from land base stations, which limits the transmission power. To overcome this challenge, researchers have been exploring the use of buoys in a marine environment as relays for communication technology. This paper proposes a simulation-based approach to investigate the impact of various beamwidths on communication performance when using a buoy as a relay. The objective is to determine the optimal beamwidth that yields the highest data rate for the target location. The approach is based on an offshore wave model where the direction of the buoy changes according to the height of the wave. The study investigates the performance of the relay in the downlink situation using receive beamforming, and the capacity at the user in the three-hop situation is verified using an amplify-and-forward (AF) relay that uses transmit beamforming to the user. The simulation results suggest that the beamwidth of the relay should be adjusted according to the wave conditions to optimize the data rate and relay position that satisfies a data rate superior to the direct path to the target position. Using a buoy as a relay can be a promising solution for enhancing maritime communications, and the simulation-based approach proposed in this paper can provide insights into how to optimize beamwidth for effective communication system design and implementation. In conclusion, the study results suggest that the use of buoys as relays for maritime communication is a feasible solution for expanding coverage and enhancing communication quality. The proposed simulation-based approach provides a useful tool for identifying relay beamwidths for achieving higher data rates in different wave conditions. These findings have significant implications for the design and deployment of communication systems in maritime environments.

GEP-based Framework for Immune-Inspired Intrusion Detection

  • Tang, Wan;Peng, Limei;Yang, Ximin;Xie, Xia;Cao, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1273-1293
    • /
    • 2010
  • Immune-inspired intrusion detection is a promising technology for network security, and well known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system elements to address these two problems. First, an additional bio-inspired technique, gene expression programming (GEP), is introduced in detector (corresponding to detection rules) representation. In addition, inspired by the avidity model of immunology, new avidity/affinity functions taking the priority of attributes into account are given. Based on the above two improved elements, we also propose a novel immune algorithm that is capable of integrating two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that consume footprint and detection time but do not contribute to improving performance. Our experimental results show the feasibility and effectiveness of our solution to handle the scalability and coverage problems of IIDS.

Performance Analysis of Adaptive Modulation Based Incremental Hop Selection Scheme for Multi-Hop Networks (다중 홉 네트워크를 위한 적응 변조 기반 증분형 홉 선택 기법의 성능 분석)

  • Lee, Bumsoo;Kim, Dohoon;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.21-27
    • /
    • 2013
  • This paper proposes an adaptive modulation based incremental hop selection scheme which improves network coverage in half-duplex multi-hop networks. The proposed scheme guarantees wide coverage through the operation of multi-hop network while preventing spectral efficiency loss due to the usage of multiple time phases in the half-duplex protocol. Also, we evaluate the average spectral efficiency performance over Nakagami-m fading channel. The simulation results show that the proposed scheme outperforms the existing schemes and the derived evaluation is valid.

A Navigation Method Based on the NDGPS and LORAN-C (NDGPS와 LORAN-C 기반의 항법 방안 연구)

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Chang-Bok;Suh, Sang-Hyun;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.891-897
    • /
    • 2006
  • The coverage of the NDGPS is nationwide currently and by 2007 more than 2 NDGPS signal will be available in most of Korean peninsula both coastal area and inland. The role of NDGPS beacon is transmitting pseudorange corrections however if range or pseudorange can be measured from NDGPS beacon signal, it might be possible to construct an independent regional navigation system: The range from NDGPS beacon signal can be used as additional measurements to remove GPS shadow area and to improve accuracy and reliability of GPS. Furthermore, by adding Loran-C, a regional radio navigation system without GPS can be possible. In this paper, a feasibility study on the regional positioning system using NDGPS and LORAN-C are given. The results show that the NDGPS and LORAN-C can be used as a ground based regional navigation system if requirements such as synchronization of NDGPS network, dual coverage of NDGPS, navigation algorithm for both NDGPS and LORAN-C measurements and an efficient ASF compensation method are met.

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

Interference Aware Fractional Frequency Reuse using Dynamic User Classification in Ultra-Dense HetNets

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Small-cells in heterogeneous networks are one of the important technologies to increase the coverage and capacity in 5G cellular networks. However, due to the randomly arranged small-cells, co-tier and cross-tier interference increase, deteriorating the system performance of the network. In order to manage the interference, some channel management methods use fractional frequency reuse(FFR) that divides the cell coverage into the inner region(IR) and outer region(OR) based on the distance from the macro base station(MBS). However, since it is impossible to properly measure the distance in the method with FFR, we propose a new interference aware FFR(IA-FFR) method to enhance the system performance. That is, the proposed IA-FFR method divides the MUEs and SBSs into the IR and OR groups based on the signal to interference plus noise ratio(SINR) of macro user equipments(MUEs) and received signals strength of small-cell base stations(SBSs) from the MBS, respectively, and then dynamically assigns subchannels to MUEs and small-cell user equipments. As a result, the proposed IA-FFR method outperforms other methods in terms of the system capacity and outage probability.

A Simulation of Mobile Base Station Placement for HAP based Networks by Clustering of Mobile Ground Nodes (지상 이동 노드의 클러스터링을 이용한 HAP 기반 네트워크의 이동 기지국 배치 시뮬레이션)

  • Song, Ha-Yoon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1525-1535
    • /
    • 2008
  • High Altitude Platform (HAP) based networks deploy network infrastructures of Mobile Base Station (MBS) in a form of Unmanned Aerial Vehicle (UAV) at stratosphere in order to build network configuration. The ultimate goal of HAP based network is a wireless network service for wide area by deploying multiple MBS for such area. In this paper we assume multiple UAVs over designated area and solve the MBS placement and coverage problem by clustering the mobile ground nodes. For this study we assumed area around Cheju island and nearby naval area where multiple mobile and fixed nodes are deployed and requires HAP based networking service. By simulation, visual results of stratospheric MBS placement have been presented. These results include clustering, MBS placement and coverage as well as dynamic reclustering according to the movement of mobile ground nodes.

  • PDF

3GPP Standardization Activity for Small Cell Enhancement (3GPP 소형셀 향상 표준화 기술 동향)

  • Baek, SeungKwon;Chang, SungCheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.628-631
    • /
    • 2014
  • Recently, the proliferation of new applications, e.g., mobile TV, Internet gaming, large file transfer, and the various of user terminals, e.g., smart phones and notebooks, has dramatically increased user traffic and network load. In order to meet this traffic growth, vendors and cellular operators are working on the development of new technologies and cellular standards. Within them, small cell deployment has been heralded as one of most promising way to increase both coverage and capacity of future cellular network. Small cell technology enables to improve capacity of cellular radio network by tight cooperation between small cell and macro cell in multi-tier network where small cells are densely deployed within macro cell coverage. In this paper, we describe the deployment scenarios for cooperation between macro cell and small cells and state-of-the-art technologies related to dense small cell deployment. Then, we also provide design principles and standardization trends for small cell enhancement in 3GPP.

  • PDF

About the Location of Base Stations for a UMTS System: Analytical Study and Simulations

  • Zola Enrica;Barcelo Francisco
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2006
  • One of the first decisions that a radio network designer must take is the location of base stations and the distance between them in order to give the best coverage to a region and, possibly, to reduce deployment costs. In this paper, the authors give an insight to this matter by presenting a possible solution to a real problem: Planning the base stations layout for a universal mobile telecommunications system (UMTS) in the city of Barcelona. At the basis of this problem, there is the interdependence between coverage and capacity in a wideband-code division multiple access (W-CDMA) system, which is a new element in the planning of BS layout for mobile communications. This aspect has been first treated with an analytical study of the cell coverage range for a specific environment and service. The achieved results have been checked with the help of snapshot simulations together with a geographical information system (GIS) tool incorporated in the simulator that allows to perform analysis and to visualize results in a useful way. By using the simulator, it is also possible to study a more complex environment, that of a set of base stations providing multiple services to a large number of users.