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Abstract 
 

Immune-inspired intrusion detection is a promising technology for network security, and well 
known for its diversity, adaptation, self-tolerance, etc. However, scalability and coverage are 
two major drawbacks of the immune-inspired intrusion detection systems (IIDSes). In this 
paper, we propose an IIDS framework, named GEP-IIDS, with improved basic system 
elements to address these two problems. First, an additional bio-inspired technique, gene 
expression programming (GEP), is introduced in detector (corresponding to detection rules) 
representation. In addition, inspired by the avidity model of immunology, new avidity/affinity 
functions taking the priority of attributes into account are given. Based on the above two 
improved elements, we also propose a novel immune algorithm that is capable of integrating 
two bio-inspired mechanisms (i.e., negative selection and positive selection) by using a 
balance factor. Finally, a pruning algorithm is given to reduce redundant detectors that 
consume footprint and detection time but do not contribute to improving performance. Our 
experimental results show the feasibility and effectiveness of our solution to handle the 
scalability and coverage problems of IIDS. 
 
 
Keywords: Network intrusion detection, artificial immune system, gene expression 
programming 
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1. Introduction 

The Internet is becoming an universal communication network for all kinds of information. It 
is envisaged to support not only current services, but also new services with various traffic 
characteristics and quality of service (QoS) performance requirements [1][2]. Since network 
resources, such as buffer and link capacity, are finite and shared by traffic flows, QoS is very 
sensitive to attacks, especially denial of service (DoS) attacks [3]. A DoS attack aims to deny 
access to shared services or resources by legitimate users. It can deplete the server system 
resources such as CPU and memory, exhaust the network resources, and disrupt the traffic 
transmission.  

Intrusion detection is an active defense technology for network security [4]. Although a 
large body of research has been devoted to intrusion detection, new directions based on 
computational intelligence approaches, e.g., artificial immune systems(AIS), are being 
pursued to cope with dynamic and increasingly complex networks more effectively [5][6]. 
AIS is inspired by the biological immune system (BIS) which has several useful features for 
intrusion detection system (IDS), such as detection, diversity, adaptation, self-tolerance, etc.  

Most of the existing immune-inspired IDSes (or IIDSes) are based on negative selection 
algorithms in AIS [7][8][9][10][11]. However, such IIDSes have two major drawbacks, 
namely scalability and coverage [5][12][13]. The scalability problem refers to the fact that the 
system has to produce a large number of detectors (corresponding to rules for intrusion/attacks 
detection) to achieve desirable detection rate, and accordingly, it requires huge amounts of 
temporal and spatial cost. The coverage problem refers to the fact that there still exist holes 
(malicious attacks which cannot be detected by the system) that are not covered by a complete 
detector repertoire. These two problems have made the IIDS ineffective [13][14][15]. 

Recent research on intrusion detection has also investigated the use of gene expression 
programming (GEP), which is a new computational intelligence technique that takes 
advantages of the combination of genetic algorithm (GA) and genetic programming (GP) [16]. 
Applying a modern metaheuristic GEP, a novel approach to detecting web application attacks 
was proposed by J. Skaruz [17]. A GEP-based constraint grammar and a constraint-based GEP 
rule extraction algorithm (CGREA) were proposed in our previous work [18]. Within a few 
evolution generations, CGREA can generate a small number of bi-attribute detection rules 
( i.e., each rule consists of only two attributes) for IDS to achieve a high degree of coverage. 
However, in CGREA, the diversity of the generated rule population is still insufficient, and the 
coverage of many rules overlaps with each other, resulting in low efficiency. 

In general, the coverage problem of IIDS can be solved to some extent by increasing the 
number of detectors. However, the redundant detectors, which do not help significantly in 
increasing the detection ability, consume more memory and detection time, and further reduce 
the system scalability. In negative selection algorithms, the greedy and variable-length 
detector generation methods optimize the detector set during the generation process [19][20]. 
However, these methods represent the detectors in terms of binary string, r-continuous and 
r-trunk bit matching schemes and cannot be applied to the GEP-based rules/detectors.  

To improve the existing IIDSes and make them more efficient, in this paper, we propose a 
new framework named GEP-IIDS. The framwork consists of three modified basic system 
elements: 1)a representation of artifical immune entities, i.e. antigens and detectors, which are 
represented respectively based on attribute-gene and constraint-based GEP, 2) avidity/affinity 
functions considering attribute-priority, and 3) an avidity-model based clonal selection 

http://dict.cnki.net/dict_result.aspx?searchword=%e4%b8%8d%e8%b6%b3&tjType=sentence&style=�
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(AMCS) algorithm inspired by the clonal selection and avidity model of BIS. Additionally, a 
GEP-based detectors pruning (GDP) algorithm is also proposed to eliminate the redundant 
detectors for GEP-IIDS. 

The rest of the paper is organized as follows. Section 2 briefly describes the analogy 
between BIS and IDS, introduces the basic elements of IIDS, and discusses the concepts of 
affinity and avidity. Related works are summarized in Section 3. In Section 4, a new 
framework, in which the AMCS algorithm is a critical component, is proposed to improve 
detection performance and reduce complexity for IIDS. Furthermore, the GDP algorithm is 
also presented. The experimental results are shown in Section 5. Finally, Section 6 concludes 
the work. 

2. Immune-Inspired Intrusion Detection 
BIS, which consists of immune organs, immune cells and immune molecules, is a very 
complex and precise defense system with the intention to protect the body from harmful 
substances. We will briefly describe the analogy between BIS and IDS using basic terms as 
follows.  

In BIS, antigens can be either self or non-self. They correspond to network access patterns 
that are either normal or abnormal in IDS. A BIS has many detectors1 to recognize non-self 
antigens (for appropriate actions such as killing those antigens), and these detectors 
correspond to the set of rules used in IDS to detect malicious access patterns (i.e., attacks or 
intrusion2).  

Detectors are generated via positive selection and negative selection in BIS. In negative 
selection (NS), an immature detector will be eliminated if it binds to any self antigen, 
otherwise it becomes mature and is distributed for detecting non-self antigens. Then BIS can 
detect non-self antigens without mistakenly detecting any self one. In positive selection, only 
those detectors that bind to non-self antigens will survive. This corresponds to the toleration of 
self programs, and the detection of misuse, abuse and unauthorized use of computer networks 
in IDS. 

In BIS, the efficiency of detection is maintained by the evolution of detectors via clonal 
selection, which always can bind to the dynamically changing antigens. Activating detectors 
are divided into a number of clones that have the same properties as their parent detectors or 
mutated properties. The detectors that bind to more non-self antigens have more chance of 
being selected for cloning, and the new self-reactive clones will be eliminated. The clonal 
selection corresponds to the learning process adapting to increasing new malicious access 
patterns in IDS.  

IIDSes are based on AIS, which are adaptive computational systems inspired by the 
principles and processes of BIS. An IIDS framework can be developed containing three basic 
system elements: representation of artificial immune entities (i.e. antigens and detectors), 
affinity function and immune algorithm [6][13]. The structure of an immune entity, namely 
genotype, is arrayed by a series of genes. An appropriate affinity function is the metric to 
quantify the interactions between two artificial immune entities and determine corresponding 
matching patterns or rules. Immune algorithm is abstracted from immunological principles 
and used to generate a set of suitable detectors. Most existing works on IIDS are devoted to the 
development of immune algorithms inspired by NS [5][6]. 

1 We use the term “detector” loosely to refer to some immunologic terms, e.g., T-cell, B-cell, recognition receptor, 
and antibody. 

2 The terms, “intrusion” and “attack,” are used loosely in this paper. 
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In the biologic avidity model, also known as quantitative model, the cumulative interactions 
between antigens and detectors are governed in part by avidity [21]. The degree of interactions 
leads to positive selection or negative selection by which the fate of each detector is 
determined. According to the avidity model, positive selection of detectors results from their 
‘weak’ interactions, while their ‘stronger’ interactions lead to NS for detectors. Moreover, the 
concepts of affinity and avidity are different in the immunology: 

• affinity, constantly describes the strength of interaction between a detector and a single 
binding site of antigen.  

• avidity, is defined as the overall binding strength of a detector to an antigen.  
Accordingly, the concepts of affinity and avidity in AIS should be different. However, most 

of the literatures have not differentiated the concepts between them, and only used affinity to 
denote the combination intensity between detector and antigen. Therefore, this paper defines 
affinity as the similarity of the detected distance between two entities, while avidity is the 
objective function for the candidate solutions, or the metric for evaluating the adaptation of 
candidate solutions. 

3. Related Work 
Existing research on the application of AIS to intrusion detection is based on three distinct 
philosophies: immune system conventional algorithms, danger theory and NS. Most of the 
research on IIDSes focuses on the development of AIS algorithms inspired by NS [5]. In this 
section, we briefly review the research on NS algorithms and GEP. 

The first NS algorithm (NSA) and an IIDS architecture based on AIS called LYSIS were 
proposed by S. Forrest et al. [7]. NSA consists of three phases: definite self-patterns, generate 
detector patterns and detect abnormality. In the first phase, the profiled normal patterns is 
regarded as “self”. NS is used in the second phase, when a pattern is selected to be a detector if 
and only if it cannot match any self pattern based on an affinity function. Detectors are 
represented in the form of binary strings and the affinity between immune entities is quantified 
using r-contiguous bit matching scheme.  

Dasgupta and Zhou compared negative characterization to positive characterization, and 
proposed an NS algorithm called v-detectors [8][9]. In v-detectors, detectors modeled through 
hypersphere with various radii are used in an efficient manner to achieve maximum coverage. 
The affinity function of v-detectors is defined based on the Euclidean distance.  

Kim and Bentley introduced a dynamic clonal selection algorithm (DynamiCS) which 
combined NS and clonal selection for IIDS [10][11]. DynamiCS evolves detectors which 
classify non-self from self. Simple binary genotype representation is used to encode the 
conjunctive-rule-based detectors consisting of a number of genes each representing an 
attribute of detector phenotype. An antigen matches with a detector if all their existing genes 
match. The affinity between a single detector and a non-self sample (i.e. antigen) is based on 
the match count. 

Although NS is the most popular immune algorithm used in IIDS, there are two drawbacks: 
scalability and coverage, as mentioned earlier. In fact, T. Stibor et al. stated that NS is not 
appropriate for network IDS [12][13][14][15]. Nevertheless, Dasgupta et al. believed that 
there are many aspects of the NS algorithm that worth further exploration [6][9][22]. 

Fortunately, the algorithms inspired by clonal selection are more scalable than the NS 
algorithms, in which a small set of best individuals is maintained so as to solve the problem 
using minimal resources. Based on the clonal selection and affinity maturation theories, the 
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CLONALG algorithm is proposed [23], and the structure based on the immune clonal 
selection algorithm (ICSA) is designed for intrusion detection [24].  

Besides the affinity functions of most immune algorithms, the exsiting GEP fitness 
functions, are not adaptable to be the avidity functions for IIDS. More specifically, calculating 
fitness according to matching ratio is the most frequently used approach. However, it is too 
simple to reflect the recognition status of normal data (i.e. self antigens). The functions, 
considering the total recognition capacity in terms of specificity and sensitivity, are only 
adaptive to the classification recognition.  

Although the best rules generated via the CGREA algorithm are more effective than those 
generated by some approachs based on other computational intelligence approaches (e.g., 
Decision Trees and Neural Networks) [17], however, we note that there are still some 
disadvantages. In CGREA, the diversity of the GEP-rule population is still insufficient, and 
the degree of coverage-overlap among rules is high. Furthermore, the fitness function, in 
which the completeness (coverage probability of attacks) and consistency (the approximate 
degree of distributions of training set and covered set) of the detector are incorporated, cannot 
reflect the match degree between a detector and a single training record. 

In most of the immune algorithms, including AMCS and CGREA, the number of detectors 
is set to a fixed value based on preliminary experience, and this will bring about redundant 
detectors. These redundant detectors consume footprint and detection time, but do not 
contribute to improving detection performance. To the best of our knowledge, no other IIDS 
has a separate module to handle the redundant detectors. Instead, the redundant detectors are 
recognized and deleted during generating process. For example, the greedy generation scheme 
is based on the r-continuous bit matching: when generating an initial detector, it searches for 
any detector that can match the initial one. If there exists the detector, it means that the initial 
detector is redundant and should be deleted [18]. Meanwhile, the variable-length method that 
generating variable-length detectors can solve the problem with “holes” caused by the 
r-continuous bit matching [20], and the detector set is optimized during the detector generation 
process to avoid the redundant detectors. 

In the above mentioned methods, judging whether a detector is redundant or not is done 
during its generation time. That is, when an initial detector is generated, it is required to match 
with all existing detectors. The time complexity is proportional to the product of the number of 
generated initial detectors and the required matching times for each detector. Accordingly, the 
overhead increases with the number of detectors. Moreover, these optimizing strategies with a 
high time complexity were proposed for the detectors represented in terms of binary strings. 
Therefore, they are not adaptive to optimize the GEP-based detector set. 

4. GEP-based IIDS Framework 
To address the above mentioned issues in existing IIDSes, a GEP-based framework is 
proposed in this section. We will first describe how to represent the antigens and detectors. We 
then define new avidity/affinity functions considering attribute-priority, describe the proposed 
avidity-model based on clonal selection (AMCS) algorithm, and finally propose a detector- 
pruning algorithm for the framework. Our work differs from the existing clonal selection 
algorithms and NS algorithms in considering both NS and positive selection. Need to mention 
that although our work uses CGREA to represent the detectors, it also has several novel 
aspects and critical improvement when compared to our previous works on GEP. 

4.1 Representation of Artificial Immune Entities 

http://dict.cnki.net/dict_result.aspx?searchword=%e4%b8%8d%e8%b6%b3&tjType=sentence&style=�
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(1). Antigen Representation 

The proposed antigen genotype is shown in Fig. 1. The attribute set of antigen represents 
the abstraction of network behaviors, and each antigen is composed of n attribute genes and 
classified as non-self and self. The non-self antigens and self antigens correspond respectively 
malicous network behaviors and normal behaviors. 

 

 
Fig. 1. Antigen genotype 

 
Definition 1: An antigen is denoted as follows:  

Iantigen = {(v1, g1), (v2, g2), … , (vn, gn), category},                               (1) 

where (vi, gi) denotes the i-th ( i =1, …, n) attribute gene, vi and gi are the ID and the value of the 
attribute gene respectively, and category∈ {self, non-self}. 

The time-continuous attack packets are interrelated, and the separate attributes of packets 
are incapable of describing the network behaviors well. In this paper, the attributes of antigen 
correspond to the derived features of KDD CUP’99 DATA set (here in after to be referred as 
KDD’99 set), which can represent the interrelated network using the time-based traffic 
features [25].  

Any network connect record in the KDD’99 set contains 41 features, and is labeled as either 
normal, or an attack. If a record is normal, the category of its corresponding antigen is self, or 
else is not-self. Acorrdingly, we set attribute ID ai (i= 1,…, 41) to correspond to the i-th feature 
of KDD’99 records, e.g., a1, a2 and a3 correspond to feature: “duration,” “protocol-type,” 
“service,” respectively. Two records of KDD’99 set and corresponding antigens are given 
below as examples: 
• Example1 
KDD’99 connection record:  
0,tcp,http,SF,241,259,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0.00, 
0.00,0.00,0.00,1.00,0.00,0.00,14,149,1.00,0.00,0.07,0.04,0.00, 0.00,0.00,0.00,normal. 

antigen:  
{(a1,0), (a2,tcp), (a3,http), (a4,SF), (a5,241), (a6,259), …, (a23, 1), …, (a39, 0.00), (a40,0.00), 
(a41,0.00), self} 

• Example2 
KDD’99 connection record: 
0,icmp,ecr_i,SF,132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,511,511, 
0.00,0.00,0.00,0.00,1.00,0.00,0.00,168,23,0.14,0.02,0.14,0.00, 0.00,0.00,0.00,0.00,smurf. 

antigen: 
{(a1,0), (a2,icmp),(a3,ecr_i),(a4,SF),(a5,132),(a6,0), … , (a23, 511), …, (a39, 0.00), 
(a40,0.00),(a41,0.00), non-self} 

(2). Detector representation 

categorygenen……gene2gene1

attribute valueattribute ID

categorygenen……gene2gene1

attribute valueattribute ID
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In this paper, a detector is represented differently from an antigen, and mainly includes the 
following fields:  

1) Genotype (Idetector), the encoding of a detector, which is composed of several genes. Each 
of these genes of a detector corresponds to one attribute of network behaviors. This genotype 
is capable of improving the detector’s coverage by using relationship symbols, such as “ >,” 
“!=” and “≤”. 

2) Self avidity (avidityself), the value of binding strength with self antigens; 

3) Non-self avidity (aviditynon-self), the value of binding strength with non-self antigens. 

As being briefly mentioned earlier, in IIDS, a detector is the rule for recognizing attacks. 
The constraint-based GEP rule (here in after to be referred as GEP-rule), has been proposed in 
our previous work and been proved to be feasible and effective [18]. Let L be a logical operator 
set, R be a relational operator set, and A be an arithmetic operator set. Note that L, R and A all 
are subsets of the function set Fs. The terminal set includes attribute set As and constant set Cs. 
Then, the formal definition of constraint grammar G for the head of GEP-rule gene is given as 
follows: 

G = ({EL, ELR, ER, EA, ET }, {l, r, a, v, c}, EL, P’ ), 

where l, r, a and c are the terminal symbols, and l∈L, r∈R, a∈A, v∈As, c∈Cs. The 
production set P’ is following: 

EL → l ELR
t | r ELR

t ，t is the arity of l or r 
ELR → ER

 | EL 

ER → r EA
2 | r EA ET | r v EA | r v ET  

EA → a v ET
n-1 ，n is the arity of a 

ET → v | c 
Set Lang(G) = {w∈{l, r, a, v, c}*: EL ⇒ w} is the GEP-rule individual set. 

The GEP-rule individuals consist of several attribute-judgment conditions linked with 
“and” or “or” operations [18]. In this paper, we represent the detectors based on the GEP-rule, 
and give the following definition for an available detector. 
Definition 2: Assuming that Idetector consists of m attribute-judgment conditions, (vi, fi, bi) 
denotes the i-th condition (i =1, … , m), vi＝index(ai), ai∈ As, fi ∈ Fs and bi∈ Cs. then  

Idetector＝{(v1, f1, b1), (v2, f2, b2), … , (vm, fm, bm)}.  

In Idetector, m cannot be larger than the number of attribute genes in an antigen. However, 
different attribute-judgment conditions can use the same attribute ID. 

A GEP-rule individual, its corresponding GEP-rule and detector are all shown in Example3. 
• Example3 
GEP individual: and. and. ≥. >. <. a23. 10. a5. 3. a5. 300. a21 
GEP-rule:          (a5>3) and (a5<300) and (a23 ≥ 10)      
detector:             {(a5,>,3), (a5,<,300), (a23, ≥,10)} 

The antigen given in Example1 cannot be detected by the above detector because the value 
of its 23th attribute (a23) is 1 that isn’t equal to or larger than 10, whereas the antigen given in 
Example2, which satisfies all attribute-judgment conditions of the detector, can be recognized. 

4.2 Avidity Function Based on Attribute Priority 
Since the existing affinity functions are not adaptable to quantify the interaction between the 
GEP-presented immune entities, in this subsection, we give definitions of affinity and avidity 
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in IIDS according to the difference between affinity and avidity in immunology, and 
distinguish them in terms of numerical values. 
(1). Affinity 

When a detector matches an antigen, the result is a Boolean value: false or true. Therefore, it 
is simple to decide their affinity based on only two values. If the attribute priority is considered 
when deciding whether each condition is matched, we can obtain a match degree as the affinity 
so as to realize not only the regular binary detector match, but also complete scale match and 
relationship match.  

The attribute weight, said w, describes the importance of each characteristic attribute. The 
value of w can be a given constant or a variable which changes adaptively with the different 
task requirements. 
Definition 3: We use wbi to denote the i-th attribute weight of detector b, which has an alphabet 
of cardinality 3 with values: t1, t2 and t3. 

1

2

3

  ;   is crucial characteristic attribute 
  ;  is important characteristic attribute
  ;  is assist attribute

bi

t b
w t b

t b


= 



 

Based on distance function, the match degree between a detector and an antigen reflects the 
similarity between them. Based on Definitions 1 through 3, and supposing that there are m 
judge conditions for a detector, Table 1 summarizes various notations and the relationship 
between them. 

 
Table 1. Relationship between detector and antigen 

attribute ID v1 v2 … vi … vm 

detector b 
weight wb1 wb2 … wbi … wbm 
function symbol f1 f2 … fi … fm 
constant  b1 b2 … bi … bm 

antigen g attribute value g1 g2 … gi … gm 
 

In addition, we define a normalized match degree between detector b and antigen g, denoted 
by Mbg as follows. To ensure the smaller distance reflects a better matching, we assume that t1< 
t2 < t3, and let max(w) denote the maximum value of w.  

1( )
( )

m

bi
i

bg

w
M w

m max w
==

×

∑
.                                                      (2) 

Based on the normalized match degree, we use the following definition of the affinity that to 
describe the strength of interaction between a detector and an antigen. 
Definition 4: affinity, is 0 when a detector does not match an antigen; otherwise, it replies on 
their match degree. The affinity between detector b and antigen g is calculated as in (3). 

 0       ; if none of the attributes can be matched
( , )

 ;  othersbgMaffinity b g
e−

= 


                     (3) 

(2). Avidity 

Different from affinity, avidity is the objective function for the candidate solutions, or the 
metric for evaluating the adaptation of candidate solutions. 
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Definition 5: avidity, reflects the interaction of one detector and all antigens, and is classified 
as self avidity and non-self avidity.  

Self avidity is the avidity between a detector and self antigens. Let b be a detector, TNb the 
number of self antigens recognized by b, and N the original number of self antigens, we use 
avidityself to denote the self avidity of b, and calculate it as in (4). 

N
T

bavidity bN
self =)(                                                          (4) 

Non-self avidity is the avidity between a detector and all non-self antigens. Let b be a 
detector, TPb be the number of non-self antigens detected by b, and N be the original number of 
non-self antigens, then aviditynon-self is denoted as the non-self avidity of b and can be 
calculated as in (5). 

1
( , )

( )

N

i
i

non self
Pb

affinity b g
avidity b

T
=

− =
∑

                                             (5) 

Note that (4), which calculates the detection rate of normal network access with a detector, 
can be used to evaluate the detector’s recognition ability to the normal network access (i.e., 
self antigens). On the other hand, (5) can be used to evaluate the recognition ability to all 
attack connects of the detector (i.e., non-self antigens) in term of the average match degree 
considering the priority of network attributes.  

4.3 Immune Algorithm 
A critical component in any IIDS is the immune algorithm. Neither an NS algorithm nor an 
affinity-only-based clonal selection algorithm can realize more than one-type of classification. 
In other words, they can recognize either a normal access or an abnormal attack, but not both. 
In an NS algorithm, the affinity of a detector is evaluated only according to its match degree 
with self-antigens. Meanwhile, the affinity calculation in a clonal algorithm only considers the 
whole matching status of a detector to the non-self antigens. 

In order to overcome the deficiencies of these existing approaches, we propose an improved 
immune algorithm, named avidity-model based clonal selection (AMCS) based on the avidity 
model of immunology and CGREA. More specifically, we first discuss the value of avidity in 
(6) and then describe the proposed algorithm. 

(1). Avidity Calculation 

A good detector involues a high non-self avidity and a low self avidity. Therefore, we first 
define two functions: fself and fnon-self, where the former is an increasing function of avidityself, 
and the latter is a decreasing function of aviditynon-self. Thus, we give following two formulas: 

( ( ) 1) 10
( ) exp( )

(10 1)

k
self

self k

avidity b
f b

− ×
=

+
, 

( )
( ) exp( )

(10 1)
non self

non self k

avidity b
f b −

−

−
=

+
, 

where b denotes a detector, and k is a balance factor used to balance the degree weights for the 
self avidity and the non-self avidity within the whole avidity of detectors.  

Then, the avidity function is proposed as in (6), and a detector with a lower avidity is better. 
( ) ( ) ( )self non selfavidity b f b f b−= × .                                             (6) 

There are two cases that would happen if we use (6) to evaluate a detector individually:  

javascript:;�
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• If avidityself is high while aviditynon-self is low, the value of avidity is larger.  

• If avidityself is low but aviditynon-self is high, the value of avidity is smaller.  
In the first case, the detector has a stronger recognition ability to the self antigens, but a 

weaker recognition ability to the non-self ones, then, NS is applied and the detector is 
discarded without being used for intrusion detection. In the second case, the recognition ability 
of the detector to the non-self antigens is stronger, and that to the self ones is weaker, so 
positive selection is executed, and the detector is reserved as a survival. Therefore, through 
changing the balance factor k, we can determine which selection process, NS or positive 
selection, plays the main role in detector evaluation. 

(2). Algorithm Description 

The basic idea of the proposed AMCS algorithm is as follows. Initially, all detectors 
satisfying the constraint grammar G are included. The detectors with the lowest avidity in the 
historical sets are included into the optimal detector set.  

The following is a list of notations used to describe AMCS.  
Santigen: the antigen set; 

SC_detector, Sbest_detector: the clone detector population and the optimal detector set, and their 
sizes are pn and pbest, respectively, where pbest ≤ pn; 

ge, gm, gmax: the current evolution generation, the number of continuous non-upgraded 
generation, the maximum evolutional generation, respectively; 

p1, p2: the detectors selected for evolution operators;  
o1, o2: the offspring of detectors p1and p2, which are generated via evolution. 

Before executing the algorithm, we extract the antigens from the set of original dat, such as 
network packets, log data, etc. These antigens, including self and non-self ones, are stored in 
set Santigen. The description of the AMCS algorithm is given as follows. 

Algorithm: avidity-model based clonal selection (AMCS)  
Input: Santigen 
Output: Sbest_detector 
Step1: Generate the initial individuals of SC_detector (the same as Step1 of CGREA); 
Step2: Build Sbest_detector and a temporary detector population Stmp_detector with population size pn ; 
Step3: Submit each antigen of Santigen to SC_detector, calculate the avidity(Idetector_i) according to (6), 

where ∀ Idetector_i ∈ SC_detector, i=1, …, pn, and update Sbest_detector in which the individuals 
are the best pbest ones in (SC_detector ∪ Sbest_detector).  
If Sbest_detector has not been upgraded during the gm generations, then go to Step6; 

Step4: Select two individuals, said p1 and p2, from SC_detector. Then execute the crossover 
operation and mutation operation, and generate o1 and o2 satisfied with the constraint 
grammar G; 

Step5: Add o1 and o2 into Stmp_detector. If the population of Stmp_detector is smaller than pn, then go 
to Step 4; otherwise SC_detector := Stmp_detector; if the current evolution generation does not 
above the gmax, increase ge by 1 and go to Step3 ; 

Step6：Output Sbest_detector. 

(3). Algorithm Analysis 

The AMCS algorithm evaluates a detector based on the tradeoff between its binding 
strength with self antigens and that with non-self antigens. As a result, both NS and positive 
selection are integrated in AMCS. The detectors matching self antigens are eliminated and the 
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ones binding non-self survive. Consequently, the false alarms for self antigens are reduced, 
and more non-self antigens are recognized efficiently. How to add new optimal detectors into 
the optimal set relies on their avidity value in ascending order. Finally, the algorithm assigns 
the optimal set from the last generation according to the approximate optimal matching degree, 
instead of the highest matching degree. 

Moreover, AMCS converges towards the minimum element set of avidity with the 
probability 1, due to the following reasons: 1) Sbest_detector is the limited Markov chain with 
positive transfer matrix; 2) the individuals in Sbest_detector are the optimal ones obtained from the 
historical generations and will not be eliminated any longer; 3) within a limited number of 
steps, the non-optimal detectors will be eliminated with the probability 1. 

4.4 Pruning Process 
In this subsection, we describe how to elimate the redundant detectors generated by 
GEP-based immune algorithms. A pruning algorithm, named GEP-based detectors pruning 
(GDP), is proposed after analyzing the redundant detectors generated by CGREA and AMCS. 

(1). Detection of redundant detectors 

Some intelligent approaches, such as Decision Trees, apply rule(-based) pruning to solve 
the overfitting problem, and evolve an accurate and compact rule set. In view of binary 
classification tasks, the rule-pruning process can be processed in the two following periods: 1) 
when generating rules, restrict the tree size based on the minimum description length (MDL) 
to avoid redundant rules which result in overfitting, and this is so called prepruning, and 2) 
after all the rules having been generated, the redundant ones are deleted via a pruning 
algorithm with given pruning data sets. The pruning rules in the period 2 should obide by three 
basic principles:  

• Select the simplest rule when there is coverage-overlap according to Occam’s razor which 
is a widely used principle in decision tree learning [26]; 

• The fewer attributes in a rule is better, as it is easy to be understood and has a lower cost in 
storing and detecting; 

• Find the balance between the number of attributes and the detection rate of rules, and try to 
build simpler rules on the condition of ensuring detection rate. 

Compared to the detector sets obtained from other immune algorithms, each GEP-based 
detector (i.e. rule) generated by CGREA only contains two or three attributes, and the above 
principles are almost satisfied before pruning. Therefore, in view of the detector set generated 
by AMCS based on CGREA, the key points are optimizing the detector sets, deleting 
redundant detectors, reducing the size of detector set, reducing the memory space, and 
increasing the detection efficiency. 

(2). Algorithm Description 

In view of the characteristics of the GEP-based detectors, we propose the GDP algorithm 
for GEP-IIDS by improving the decision tree pruning algorithm proposed in [27]. 

In order to describe GDP distinctly, a list of notations is first given as follows. 
Sbest_Ab: the optimal detector set whose initial size is pn; 
SAg_pruning: the pruning antigen set with the size gn, which consists of the antigens selected 

randomly and the antigens used to generate Sbest_Ab; 
SAb_pruned : the mature detector set.  
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Before executing GDP, Sbest_Ab has been ordered depending on the avidities of detectors.  
The GDP algorithm works as follows. 

Algorithm: GEP-based Detectors Pruning (GDP) 
Input: SAg_pruning  

Sbest_Ab  
Output: SAb_pruned 

Step1: Set SAb_pruned = ∅ and i=1; 
Step2: Get the i-th detector b in the current Sbest_Ab and add it to SAb_pruned; 
Step3: Delete all the antigens that match with b; 
Step4: If SAg_pruning is null, go to Step6; 
Step5: i=i＋1, if i ≤ pn, go to Step2; 
Step6：Output SAb_pruned. 

(3). Algorithm analysis 

Without calculating the detectors’ avidities repeatedly, GDP can reduce the temporal cost of 
pruning compared to the original pruning algorithm. The selected order of a detector is only 
decided according to its avidity calculated based on the given training set. The spatial cost of 
GDP is the same as that of the original pruning algorithm, but the time complexity is reduced 
by an order of magnitude. It is very beneficial to IIDS when handling a huge amount of 
network data. The recalculation of avidities in the original pruning algorithm can be seen as a 
retraining process that treats the optimal detector set as the original detector set. Nevertheless, 
efficient pruning redundant detectors using GDP, is based on the premise that the optimal 
detectors can be generated by using the training set. If the premise cannot be guaranteed, the 
original pruning algorithm is more feasible than GDP.  

Furthermore, GDP is used to delete redundant detectors after the detector set has been 
generated via AMCS, which is different from the NS algorithm where the detector set is 
optimized during the detectors generation process. GDP mainly implements the pruning 
function for the GEP-based detectors which satisfy two properties: closure and integrality. In 
our previous work [18], the number of optimal detectors generated by CGREA, on which 
AMCS is based, is small and simple. Therefore, it is reasonable for GDP to judge whether a 
detector is redundant or not just after generating the optimal detector set. 

5. Experimental Results and Analysis 

In this section, we describe the experimental environment and parameter settings, and evaluate 
the proposed GEP-IIDS framework using the well known KDD’99 set. 

5.1 Environment and Parameter Setting 
The KDD’99 set has been recently utilized extensively for intrusion detection research and 
system development through a suite of pattern recognition and bio-inspired computing 
algorithms. It provides two data sets, namely 10% Training Set (kddcup.data_10_percent) and 
Test Set (corrected) [25]. Any network connect record in these data sets contains 41 features, 
in which features no.2, 3, 4 are symbolic, and the others are numerical. In our experiments, the 
symbolic features have also been converted to be numerical, and then all numerical 41 features 
are normalized. Each record is labeled as either normal, or an attack. The attack records are 
grouped into one of the four categories: Probing, DoS, User to Root (U2R) and Remote to 
Local (R2L). The actual numbers of records in the training/test data sets used in experiments 
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are listed in Table 2. The records in the two subsets, namely Training Subset and Test Subset, 
are randomly sampled from the 10% Training Set.  
 

Table 2. Distribution of the data sets used for training and test 
Category 10% Training Set Training Subset Test Set Test Subset 
Normal 97278 986 60593 4000 
Probing 4107 41 4166 1107 
DoS 391458 3961 229853 13715 
U2R 52 1 228 52 
R2L 1126 11 16189 1126 
total 494021 5000 311029 20000 

 

All experiments were performed on an Intel-Pentium® D CPU 2.8GHz platform with 1GB 
RAM size running Windows XP. The performance of intrusion detection is evaluated in terms 
of detection rate pd and false alarm rate pf using the following equations: 

the number of detected attacks records
the total number of attacks recordsdp = , 

the number of Normal records detected as attacks
the total number of Normal recordsfp = .                          (7) 

 (1- pd) is equal to the probability of false negative (i.e. the attack records are undetected), and 
pf denotes the probability of false positive (i.e., the normal records are mistaken for attack 
ones). 

In our implementation of the proposed GEP-IIDS framework, each detector is a single- 
gene GEP individual in which the function set Fs is {and, or, not, >, ≥, <, ≤, =, !=}. In addition, 
each element of constant set Cs is a random constant∈[0.1], and the attribute set As is { a1, a2, 
… , a41} corresponding to the feature set for the KDD’99 records. The other GEP parameters 
are set as follows: crossover probability pross =0.2, mutation probability pmute =0.95, length of 
head h=8, function symbol probability pfunc =0.6, attribute symbol probability pattr =0.28, and 
roulette wheel selection is conducted. To calculate the attribute weight, we set t1=1, t2=2 and 
t3=3. According to the preliminary results, we set k=2 and pbest =20 in the following 
experiments. 

5.2 Results and Analysis 
(1). AMCS vs. CGREA 

The proposed AMCS algorithm is executed to generate detector set using the Training 
Subset as training set, and tested on the 10% Training Set and the Test Subset Table 2. Fig. 2 
summarizes the performance of 12 training runs in terms of detection rate and false alarm rate. 
The false alarm rates from the 24 detection tests (each of the 12 detector sets is tested on two 
test sets) range from 0.1% to 0.5%. Tested on the 10% Training Set, the detection rates are 
mostly between 98.8% ~ 97.6%, which are much better than those of the Test Subset 
(90.5%~88.4%). The result in Fig. 2 indicates that the optimal detector sets generated by 
AMCS can achieve a lower false alarm rate and a consistent detection rate. If the distribution of 
training set is the same as that of test set, the detection performance of the AMCS algorithm 
will be better. 
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Fig. 2. AMCS algorithm performance of 12 runs 

 

Testing on the 10% Training Set, the coverage of a single detector in the optimal detector sets, 
which is generated by AMCS and CGREA respectively, are compared in Fig. 3. The larger 
number of covered Normal records denotes more false negative errors, and the more covered 
attack records indicate the higher detection probability of a given detector. The detectors in the 
optimal sets, extracted by using the two methods, are both ranked on the avidity values. The 
detector, with a smaller value, is better and given a smaller serial number.  
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Fig. 3. Coverage of each detector in the optimal detector set 
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Fig. 3 (a) and (b) show000 that, in AMCS, except for the fact that detector no.4 covers only 
128 Normal records, none of Normal records and only a very small number (only 970~1238) 
of attack records are covered by the detectors no.1 through no.12. In addition, even through 
detectors no.14 ~ no.16 cover a fewer Normal records, detector no.13 has a higher avidity due 
to the fact that it covers three times of the attack records covered by others. It is the same case 
in detectors no.17~ no.20. In AMCS, the avidity function is based on attribute-priority, and 
uses the balance factor k to integrate two selection processes, which is valid for evaluating 
detectors. The value of k in our experiments is 2. It means that the power of self avidity weight 
is twice of that of non-self avidity, and negative selection prevails in the evolution process. 
Therefore, the AMCS-based detectors which cover less Normal records are more optimal.  

Because CGREA evaluates detectors considering the coverage probabilities of attacks and 
the approximate degree of distributions of the training set and the covered set, it can be seen 
from Fig. 3 (c) and (d) that the CGREA-based detector covers more attack records and more 
Normal records as well, thus resulting in a lower avidity. We denote by Nc the sum of the 
numbers of attack records covered by all detectors in a detector set. According to the results 
given in Fig. 3 (c) and (d), the Nc of AMCS-based and CGREA-based optimal detector set are 
687774 and 6247007 respectively, and both are much larger than 396743 (the total number of 
attack records in the 10% Training Set). It is obvious that the overlapping coverage is also a 
serious problem of the GEP-based detector sets. 

As we can see from Fig. 3, the results show that the diversity of the AMCS-based detector 
population is more sufficient, and the degree of coverage-overlap between detectors is lower 
than that of CGREA-based detectors population. Furthermore, the proposed avidity function, 
which is capable to balance the weight of NS and positive selection in AMCS via balance 
factor, is more applicable to IIDS than that of CGREA. 

(2). Performance evaluation of the GDP algorithm 

In order to evaluate the sensitivity of the proposed GDP to the pruning test data, we 
randomly generate five subsets from the 10% Training Set with different sizes and different 
record distribution as pruning antigen sets. These five pruning antigen sets are outlined in 
Table 3, and p1 is also used as the training set to generate the optimal detector set before 
pruning. The distribution of p1, p2 and p3 is almost the same with the 10% Training set. The 
distribution ratios in p4 and p5 are very different with those in the 10% Training Set and KDD 
test set. 

Selecting p5 as the pruning antigen set and the 10% Training set as the detection test set,  
 

 

Table 3. Distribution of the pruning subsets 
Pruning 

antigen set Record number Record distribution (%) 
Normal Probing DoS R2L U2R 

p1 5000 19.70 0.82 79.62 0.22 0.02 
p2 10000 19.70 0.82 79.24 0.23 0.01 
p3 20000 19.70 0.83 79.23 0.23 0.01 
p4 20000 20.00 5.54 68.58 5.63 0.26 
p5 30000 33.33 13.69 49.05 3.75 0.17 

 
As the records are randomly selected according to given ratio, the accuracy of the given ratio 
may result in some subtle differences in the number of records with different type between 
these subsets.  
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Table 4. Comparation between the original and pruned optimal detector sets 

Scheme 

Original optimal detector set Pruned optimal detector set 

size 
number of 
detected 

Normal records 

number of 
detected attack 

records 
size 

number of 
detected Normal 

records 

number of 
detected attack 

records 
AMCS 20 447 392648 9 447 392648 
CGREA 20 3070 392146 3 3069 392144 

 
The test results of the detector sets before and after being pruned are both listed in Table 4. 
The number of detected records detected by the pruned optimal detector set is the same as that 
of original one generated by AMCS. The number of detected attack records based on CGREA 
is reduced by two, and the number of Normal records mistaken for attack is reduced by one. 
However, the reduction is insignificant compared to the total number of attack records 
(396743) and that of Normal records (97278). It is worth noting that, in these two cases, the 
sizes of pruned optimal detector sets are only 15% and 45% of the original ones while 
achieving almost the same detection performances. The result in Table 4 shows that GDP can 
improve the detection efficiency of the IIDS through pruning the optimal detector set. 

The detection performance of pruned detector set is presented in Fig. 4 and Fig. 5. We use 
the five sets given in Table 3 as the pruning antigen sets, then detect on the 10% Training Set 
and the Test Set using the AMCS-based detector set before and after being pruned, 
respectively. In each case, the detection rate and false alarm rate both differ by no more than 
0.1%. It indicates that GDP can achieve good detection performance constantly. 
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Fig. 4. Performacne of detecting the 10% Training Set 
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Next we will analyze the subtle differences after different sets are pruned. 

• When the pruning antigen set is p1, which is also the training set for generating the optimal 
detector set, the detection rate is reduced by 0.08% and 0.05% comparing to those of 
un-pruned ones, but the false alarm rate is reduced by 3.1% and 2%. 

• When the pruning antigen sets are p2 and p3 whose sizes are increased to one and three 
times more than the training set, respectively, the achived detection rate is higher than 
those of the pruning using p1 and the unpruning case, and the false alarm rate is reduced 
significantly. 

• When the pruning antigen set are p4 and p5, whose sizes are increased to four and six 
times of the training set respectively, the detection performance are the same with those of 
being pruned. 

The results in Fig. 4 and Fig. 5 show that it is viable to treat the original training set as the 
pruning antigen set, but it will be better when the size of pruning antigen set is larger than that 
of the original training set. However, if the size of pruning antigen set exceeds a threshold, the 
detection performance will no longer improve, even though the time spent in pruning 
increases. 

(3). Performance comparison 

Table 5 presents a comparison of detection performance with some other intelligent 
methods using the Test Set for test. In GEP-IIDS, the one that provides the best detection 
performance among the twelve sets in Fig. 2, is selected as the detector set. As can be seen 
from Table 5, although the attack detection rate achieved by GEP-IIDS is slightly lower than 
that achieved by most other methods, but the false alarm rate is close to that of KDD’99 
winner 1. The highest attack detection rate is obtained by using Neural Networks with a much 
higher false alarm rate (2.13%) than 0.51% obtained with GEP-IIDS. Using the GEP-IIDS 
detectors, DoS records are detected with a probability of 97.26%, that is only slightly lower 
than that of KDD’99 winner 2 but higher than others. To state that there are other results in the 
literatures that even overcome the KDD’99 winners, but they have been obtained by using 
filtered versions of the KDD’99 set. In order to have a fair comparison, we have not included 
them. 

In order to detect the 22 types of attack in the 10% Training Set and achieve the 
performance presented in Table 5, GEP-IIDS merely used nine (the size of the pruned optimal 
detector set) bi-attribute detectors. In comparison, other methods consume more time and 
space resources. For instance, KDD winner 1 contained 500 decision trees for 22 specific 
attack types [28], while KDD winner 2 used 218 and 755 decision trees for five categories and 
specific attack types respectively [29]. In addition, Neural Networks assigned 125 input 
neurons and five output neurons, and another method based on Decision Trees generated 218 
and 537 decision trees for five categories and specific attack types respectively in [30]. The 
system based on GP-classifier generated a set of 50 optimal transformations to achive the 
performance [31]. 

 

Table 5. Comparison with other intelligent methods 

Method Attacks  
detection rate(%) 

Attacks  
false alarm rate(%) 

DoS  
detection rate(%) 

GEP-IIDS 90.67 0.51 97.26 
KDD winner 1[28] 91.00 0.50 97.10 
KDD winner 2 [29] 91.30 0.58 97.47 
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Neural Networks [30] 92.61 2.13 97.00 
Decision Trees [30] 91.94 0.57 97.00 
GP-classifier [31] 92.50 1.35 96.00 

 

The above discussion indicates that the GEP-IIDS can generate optimal detector set which 
can obtain a low false alarm rate and a high DoS attack detection rate with less time in 
generating detectors and detecting attack/intrusion. 

We have also compared GEP-IIDS with v-detectors, one of the main and best NS algorithms. 
We choose the v-detectors NS algorithm because it also used the same 10% Training Set for 
evaluation. Since the results of immune algorithms like these are stochastic and mostly depend 
on the parameter settings, we use the best outcome of the v-detectors NS algorithm presented 
in the literatures for comparision, and the results are given in Table 6. They indicate that the 
propsed GEP-IIDS can achieve a better performance, even with a small population size and a 
smaller maximum evolutional generation which translates to a lower space and time 
complexity. 

 

Table 6. GEP-IIDS vs. v-detectors NS 
Option GEP-IIDS v-detectors NS [22] 

size of clone detector population 60 1000 
maximum evolutional generation 50 1000 

size of pruned optimal detector set 9 100~800 
detection rate (%) 98.97 83.92 

false alarm rate (%) 0.46 1.45 

6. Conclusions 
While the poor performance of prior approaches based on immune-inspired IDS has led to 
concerns about the viability of such approaches, we believe that immune-inspired IDS is still 
promising as it considers not only how to generate the detectors/rules for intrusion detection, 
but also how to build a complete security system for networks. In this paper, we have proposed 
and demonstrated the applicability of an improved framework GEP-IIDS integrating two 
bio-inspired techniques: AIS and GEP, to overcome two major problems - scalability and 
coverage - of existing IIDSes. Our main contributions are: 1) an attribute-gene representation 
for antigens and a GEP-rule based representation for detectors, 2) new avidity/affinity 
functions that take weighting attribute priorities into consideration, 3) an avidity-model based 
clonal selection algorithm, which integrates both negative selection and positive selection, and 
4) a GEP-based detectors pruning algorithm for GEP-IIDS to find and eliminate the redundant 
detectors. The experiment results have shown that the GEP-IIDS framework provides a higher 
detection probability of DoS attack, a lower false alarm rate and a lower optimal detectors 
generation cost. Moreover, our solution requires much less computing resources during the 
detection procedure since the size of the optimal detector set in use is very small and each 
detector needs only two attributes. As shown in our study, it is feasible and effective to 
eliminate the bottlenecks of immune-inspired intrusion detection using efficient approaches to 
adjusting basic elements and pruning redundant detectors. 
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