• Title/Summary/Keyword: network congestion

Search Result 908, Processing Time 0.023 seconds

A Network-Aware Congestion Control Scheme for Improving the Performance of C-TCP over HBDP Networks (HBDP 네트워크에서 C-TCP의 성능 향상을 위한 네트워크 적응적 혼잡제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1600-1610
    • /
    • 2015
  • While today's networks have been shown to exhibit HBDP (High Bandwidth Delay Product) characteristics, the legacy TCP increases the size of the congestion window slowly and decreases the size of the congestion window drastically such that it is not suitable for HBDP Networks. In order to solve this problem with the legacy TCP, many congestion control TCP mechanisms have been proposed. C-TCP (Compound-TCP) is a hybrid TCP which is a synergy of delay-based and loss-based approaches. C-TCP adapts the decreasing rate of the delay window without considering the congestion level, leading to degradation of performance. In this paper, we propose a new scheme to improve the performance of C-TCP. By controlling the increasing and decreasing rates according to the congestion level of the network, our proposed scheme can improve the bandwidth occupancy and fairness of C-TCP. Through performance evaluation, we show that our proposed scheme offers better performance in HBDP networks as compared to the legacy C-TCP.

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.

Congestion Detection for QoS-enabled Wireless Networks and its Potential Applications

  • Ramneek, Ramneek;Hosein, Patrick;Choi, Wonjun;Seok, Woojin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.513-522
    • /
    • 2016
  • We propose a mechanism for monitoring load in quality of service (QoS)-enabled wireless networks and show how it can be used for network management as well as for dynamic pricing. Mobile network traffic, especially video, has grown exponentially over the last few years and it is anticipated that this trend will continue into the future. Driving factors include the availability of new affordable, smart devices, such as smart-phones and tablets, together with the expectation of high quality user experience for video as one would obtain at home. Although new technologies such as long term evolution (LTE) are expected to help satisfy this demand, the fact is that several other mechanisms will be needed to manage overload and congestion in the network. Therefore, the efficient management of the expected huge data traffic demands is critical if operators are to maintain acceptable service quality while making a profit. In the current work, we address this issue by first investigating how the network load can be accurately monitored and then we show how this load metric can then be used to provide creative pricing plans. In addition, we describe its applications to features like traffic offloading and user satisfaction tracking.

TCP Performance Optimization Using Congestion Window Limit in Ad Hoc Networks with MAC Frame Aggregation (MAC Frame Aggregation이 가능한 에드혹 네트워크에서의 Congestion Window Limit을 통한 TCP 성능의 최적화)

  • Kang, Min-Woo;Park, Hee-Min;Park, Joon-Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.4
    • /
    • pp.52-59
    • /
    • 2010
  • MAC frame aggregation is a method that combines multiple MPDUs (MAC protocol data units) into one PPDU (PHY protocol data units) to enhance network performance at the MAC layer. In ad hoc networks, TCP underperforms due to the congestion window overshooting problem and thus by setting CWL (congestion window limit) TCP performance can be improved. In this paper, we investigate the problem of setting CWL for TCP performance optimization in ad hoc networks with MAC frame aggregation.

An Active Queue Management Method Based on the Input Traffic Rate Prediction for Internet Congestion Avoidance (인터넷 혼잡 예방을 위한 입력율 예측 기반 동적 큐 관리 기법)

  • Park, Jae-Sung;Yoon, Hyun-Goo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.41-48
    • /
    • 2006
  • In this paper, we propose a new active queue management (AQM) scheme by utilizing the predictability of the Internet traffic. The proposed scheme predicts future traffic input rate by using the auto-regressive (AR) time series model and determines the future congestion level by comparing the predicted input rate with the service rate. If the congestion is expected, the packet drop probability is dynamically adjusted to avoid the anticipated congestion level. Unlike the previous AQM schemes which use the queue length variation as the congestion measure, the proposed scheme uses the variation of the traffic input rate as the congestion measure. By predicting the network congestion level, the proposed scheme can adapt more rapidly to the changing network condition and stabilize the average queue length and its variation even if the traffic input level varies widely. Through ns-2 simulation study in varying network environments, we compare the performance among RED, Adaptive RED (ARED), REM, Predicted AQM (PAQM) and the proposed scheme in terms of average queue length and packet drop rate, and show that the proposed scheme is more adaptive to the varying network conditions and has shorter response time.

Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

  • Shin, Minsu;Park, Mankyu;Oh, Deockgil;Kim, Byungchul;Lee, Jaeyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2796-2813
    • /
    • 2014
  • This paper presents a new algorithm called the adaptive logarithmic increase and adaptive decrease algorithm (A-LIAD), which mainly addresses the Round-Trip Time (RTT) fairness problem in satellite networks with a very high propagation delay as an alternative to the current TCP congestion control algorithm. We defined a new increasing function in the fashion of a logarithm depending on the increasing factor ${\alpha}$, which is different from the other logarithmic increase algorithm adopting a fixed value of ${\alpha}$ = 2 leading to a binary increase. In A-LIAD, the ${\alpha}$ value is derived in the RTT function through the analysis. With the modification of the increasing function applied for the congestion avoidance phase, a hybrid scheme is also presented for the slow start phase. From this hybrid scheme, we can avoid an overshooting problem during a slow start phase even without a SACK option. To verify the feasibility of the algorithm for deployment in a high-speed and long-distance network, several aspects are evaluated through an NS-2 simulation. We performed simulations for intra- and interfairness as well as utilization in different conditions of varying RTT, bandwidth, and PER. From these simulations, we showed that although A-LIAD is not the best in all aspects, it provides a competitive performance in almost all aspects, especially in the start-up and packet loss impact, and thus can be an alternative TCP congestion control algorithm for high BDP networks including a satellite network.

A study on Improvement of BIS System using Bus congestion (버스 혼잡도를 이용한 BIS 시스템 개선방안 연구)

  • Joo, Young-Hwan;Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.211-215
    • /
    • 2016
  • In this paper, we utilize a service provided by the existing bus information system. To improve the limitations of the bus information system the information provided to the passenger using the bus. By applying the IoT sensor network system. congestion information of the bus provided to customer. Provides information in addition to the existing bus congestion information to passengers wishing to use public transport from the smartphone app with an existing information system. The bus congestion information in addition to the existing information to passengers who want to use public transport provided in the existing information system and smartphone apps. Prevent accidents that might occur due to congestion in the bus, efficient and convenient way to propose an improved bus information system for public transport. Developed a prototype system using the IOT sensor network verified the proposed method.

Performance Improvement of TCP over Wired-Wireless Networks by Predicting Packet Loss of Mobile Host (유. 무선 혼합망에서 이동 호스트의 패킷 손실 예측을 통한 TCP 성능 향상)

  • Kwon, Kyung-Hee;Kim, Jin-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • In wired networks, packet losses mostly occur due to congestion. TCP reacts to the congestion by decreasing its congestion window, thus to reduce network utilization. In wireless networks, however, losses may occur due to the high bit-error rate of the transmission medium or due to fading and mobility. Nevertheless, TCP still reacts to packet losses according to its congestion control scheme, thus to reduce the network utilization unnecessarily. This reduction of network utilization causes the performance of TCP to decrease. In this paper, we predict packet loss by using RSS(Received Signal Strengths) on the wireless and suggest adding RSS flag bit in ACK packet of MH. By using RSS flag bit in ACK, the FH(Fixed Host) decides whether it adopt congestion control scheme or not for the maximum throughput. The result of the simulation by NS-2 shows that the proposed mechanism significantly increases sending amount and receiving amount by 40% at maximum.

Wireless TCP Enhancement by Modifying SNOOP (개선된 SNOOP 기법을 이용한 무선 TCP 성능향상 방안)

  • Mun Youngsong;Kang Insuk
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2005
  • Reliable transport protocols such as TCP are tuned to Perform well in traditional networks where packet losses occur mainly because of congestion. In a wireless network, however, packet losses will occur more often due to reasons such as the high bit error rate and the handoff rather than due to congestion. When using TCP over wireless network, TCP responds to losses due to the high bit error rate and the handoff by invoking congestion control and avoidance algorithms, resulting in the degraded end-to-end performance in the wireless network. There have been several schemes for improving TCP performance over wireless links. Among them, SNOOP Is a very promising scheme because of the localized retransmission. In this thesis, an efficient scheme is proposed by modifying SNOOP scheme. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss.

A Handoff Mechanism to Avoid Congestion in Wireless Cells (무선 셀에서의 혼잡 발생을 피하는 핸드오프 방안)

  • 변해선;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.595-603
    • /
    • 2003
  • To provide mobile nodes with continuous communication services, it is important to reduce the packet losses during handoffs. The handoffs of mobile nodes cause packet losses and decrease of TCP throughput on account of a variety of factors. One of those is the congestion in the new cell. Due to the congestion, not only the node moving into the cell but also the already existing nodes that were successfully communicating in the cell suffer the performance degradation. In this paper we propose a new handoff mechanism called‘packet freeze control’, which avoids the congestion caused by handoffs by regulating the influx of traffic burst into the new cell. Packet freeze control is applicable to a wireless network domain in which FAs(Foreign Agents) are connected hierarchically and constitute a logical tree. It gradually increases the number of packets transferred to the new cell by buffering packets in the FAs on the packet delivery path over the wireless network domain. The simulation results show that the proposed mechanism not only reduces the packet losses but also enhances the TCP throughput of other mobile nodes in the cell.