• Title/Summary/Keyword: network centrality

Search Result 753, Processing Time 0.026 seconds

Analysis of Research Trends of Ecosystem Service Related to Climate Change Using Big-data (빅데이터를 활용한 기후변화와 연계된 생태계서비스 연구 동향분석)

  • Seo, Ja-Yoo;Choi, Yo-Han;Baek, Ji-Won;Kim, Su-Kyoung;Kim, Ho-Gul;Song, Won-Kyong;Joo, Woo-Yeong;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • This study was performed to investigate the ecosystem service patterns in relation to climate change acceleration utilizing big data analysis. This study aimed to use big data analysis as one of the network of views to identify convergent thinking in two fields: climate change and ecosystem service. The keywords were analysed to ascertain if there were any differences in the perceiving problems, policy direction, climate change implications, and regional differences. In addition, we examined the research keywords of each continent, the centre of ecosystem service research, and the topics to be referred to in domestic research. The results of the analysis are as follows: First, the keyword centrality of climate change is similar to the detailed indicators of The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) regulations, content, and non-material ecosystem services. Second, the cross-analysis of terms in two journals showed a difference in value-oriented point; the Ecosystem Service Journal identified green infrastructure as having economic value, whereas the Climate Change Journal perceives water, forest, carbon, and biodiversity as management topics. The Climate Change Journal, but not the former, focuses on future predictions. Third, the analysis of the research topics according to continents showed that water and soil are closely related to the economy, and thus, play an important role in policy formulation. This disparity is due to differences in each continent's environmental characteristics, as well as economic and policy issues. This fact can be used to refer to the direction of research on ecosystem services in Korea. Consistent with the recent trend of expanding research regarding the impacts of climate change, it is necessary to study strategies to scientifically predict and respond to the negative effects of climate change.

A Study on the Factors Affecting Continuous Use of AI Speaker Using SNA (SNA를 이용한 AI 스피커 지속적 사용에 영향을 미치는 요인 분석 연구: 아마존 에코 리뷰 중심으로)

  • Kim, Young Bum;Cha, Kyung Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.95-118
    • /
    • 2021
  • As the AI speaker business has risen significantly in recent years, the potential for numerous uses of AI speakers has gotten a lot of attention. Consumers have created an environment in which they can express and share their experiences with products through various channels, resulting in a large number of reviews that leave consumers with a variety of candid opinions about their experiences, which can be said to be very useful in analyzing consumers' thoughts. Using this review data, this study aimed to examine the factors driving the continued use of AI speakers. Above all, it was determined whether the seven characteristics associated with the intention to adopt AI identified in prior studies appear in consumer reviews. Based on customer review data on Amazon.com, text mining and social network analysis were utilized to examine Amazon eco-products. CONCOR analysis was used to classify words with similar connectivity locations, and Connection centrality analysis was used to classify the factors influencing the continuous use of AI speakers, focusing on the connectivity between words derived by classifying review data into positive and negative reviews. Consumers regarded personality and closeness as the most essential characteristics impacting the continued usage of AI speakers as a result of the favorable review survey. These two parameters had a strong correlation with other variables, and connectedness, in addition to the components established from prior studies, was a significant factor. Furthermore, additional negative review research revealed that recognition failures and compatibility are important problems that deter consumers from utilizing AI speakers. This study will give specific solutions for consumers to continue to utilize Amazon eco products based on the findings of the research.

Characteristics of Science-Engineering Integrated Lessons Contributed to the Improvement of Creative Engineering Problems Solving Propensity (창의공학적 문제해결성향에 기여한 과학-공학 융합수업의 특성)

  • Lee, Dongyoung;Nam, Younkyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.285-298
    • /
    • 2022
  • This study is to investigate the effects and characteristics of science and engineering integrated lessons on elementary students' creative engineering problem solving propensity (CEPSP). The science and engineering integrated lessons used in this study was a 10 lesson-hours STEM program, co-developed by University of Minnesota and Purdue University. The program was implemented in the 6th grade science class of H Elementary School located in P Metropolitan city. The main data of this study are the pre-post CEPSP result and interview with 5 students collected before and after the research. The CEPSP result was analyzed by a paired-sample t-test and hierarchical cluster analysis. As a result of the t-test, it was found that overall, the program has a positive effect on the students' CEPSP score. As a result of cluster analysis, it was confirmed that studnets' CEPSP could be classified into two groups (lower and higher score cluster). Five students whose, CEPSP score has significantly improved after the lessons were interviewed to find out what the characteristics of the program that contribute the significant change are. As a result of conducting centroid analysis of the interview transcription and the hybrid analysis method, it was found that the meaningful experiences that the five students commonly shared were 'problem solving through collaboration' and 'through repeated experiments (redesign)', problem solving' and 'utilization of scientific knowledge'. As minor reactions, 'choice of the best experimental method' and 'difference between science and engineering' appeared.

Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique (키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석)

  • Youngseok Lee
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2023
  • In this study, trends in ICT education were investigated by analyzing the frequency of appearance of keywords related to machine learning and using conversion of iteration correction(CONCOR) techniques. A total of 304 papers from 2018 to the present published in registered sites were searched on Google Scalar using "ICT education" as the keyword, and 60 papers pertaining to ICT education were selected based on a systematic literature review. Subsequently, keywords were extracted based on the title and summary of the paper. For word frequency and indicator data, 49 keywords with high appearance frequency were extracted by analyzing frequency, via the term frequency-inverse document frequency technique in natural language processing, and words with simultaneous appearance frequency. The relationship degree was verified by analyzing the connection structure and centrality of the connection degree between words, and a cluster composed of words with similarity was derived via CONCOR analysis. First, "education," "research," "result," "utilization," and "analysis" were analyzed as main keywords. Second, by analyzing an N-GRAM network graph with "education" as the keyword, "curriculum" and "utilization" were shown to exhibit the highest correlation level. Third, by conducting a cluster analysis with "education" as the keyword, five groups were formed: "curriculum," "programming," "student," "improvement," and "information." These results indicate that practical research necessary for ICT education can be conducted by analyzing ICT education trends and identifying trends.

Differences in Environmental Behavior Practice Experience according to the Level of Environmental Literacy Factors (환경소양 요인별 수준에 따른 환경행동 실천 경험의 차이)

  • Yoonkyung Kim;Jihoon Kang;Dongyoung Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.1
    • /
    • pp.153-165
    • /
    • 2023
  • This study investigates learners' environmental literacy, classifies the results by factors of environmental literacy, and then investigates the differences in the students' environmental behavior practice experiences according to the classification by factor. The study was conducted with 47 6th grade students from D elementary school located in P metropolitan city as the subject of final analysis, and environmental literacy questionnaires and environmental behavior practice experience questionnaires were used as the main data. As a result of the study, the learners were classified into three groups according to the factors of environmental literacy, and they were respectively named as the "High environmental literacy group", "low environmental literacy group", and "Low Function and Affectif group". A Word network was formed using the descriptions of environmental behavior practice experiences for each cluster, and a Degree Centrality Analysis was performed to visualize and then analyze. As a result of the analysis, "High environmental literacy group" was confirmed, 1) recognized the subjects of environmental action practice as individuals and families, 2) described his experience of environmental action practice in relation to all elements of environmental literacy, and had a relatively pessimistic view. "low environmental literacy group", and "Low Function and Affectif group" were confirmed 1) perceive the subject of environmental behavior practice as a relatively social problem, 2) the description of the experience of environmental behavior practice is relatively biased specific factors, and the "Low Function and Affectif group" is particularly focused on the knowledge element. And 3) it was confirmed that they were aware of climate change from a relatively optimistic perspective. Based on this conclusion, suggestions were made from the perspective of environmental education.

Comparative Analysis of Low Fertility Response Policies (Focusing on Unstructured Data on Parental Leave and Child Allowance) (저출산 대응 정책 비교분석 (육아휴직과 아동수당의 비정형 데이터 중심으로))

  • Eun-Young Keum;Do-Hee Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.769-778
    • /
    • 2023
  • This study compared and analyzed parental leave and child allowance, two major policies among solutions to the current serious low fertility rate problem, using unstructured data, and sought future directions and implications for related response policies based on this. The collection keywords were "low fertility + parental leave" and "low fertility + child allowance", and data analysis was conducted in the following order: text frequency analysis, centrality analysis, network visualization, and CONCOR analysis. As a result of the analysis, first, parental leave was found to be a realistic and practical policy in response to low fertility rates, as data analysis showed more diverse and systematic discussions than child allowance. Second, in terms of child allowance, data analysis showed that there was a high level of information and interest in the cash grant benefit system, including child allowance, but there were no other unique features or active discussions. As a future improvement plan, both policies need to utilize the existing system. First, parental leave requires improvement in the working environment and blind spots in order to expand the system, and second, child allowance requires a change in the form of payment that deviates from the uniform and biased system. should be sought, and it was proposed to expand the target age.

Patent Application Research Analysis on Domestic Smart Factory Technology Through SNA (SNA를 통한 국내 스마트공장 기술에 관한 특허 출원 조사 분석)

  • Jae-Hyo Hwang;Ki-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.267-274
    • /
    • 2024
  • In this paper, we investigated the number of domestic patent applications by year, the number of domestic patent disclosures by year, and the number of domestic registrations by year regarding smart factories. The number of patent applications by applicant type was investigated. Based on the patents studied, it was found that the IPC appearing in the most patents was G05B 19/418. In addition, through social network analysis of smart factory patented IPCs, it was found that G05B 19/418 was the IPC with the highest degree of centrality. From the above, if the IPC of the core technology of the patent submitted for smart factory is G05B 19/418, the technology combined with G05B 23/02, that is, the technology combining "factory control" and "monitoring" is the most patented. When the IPC of the core technology was G06Q 50/04, it was confirmed that the technology combined with G06Q 50/10, that is, the technology combining "manufacturing" and "service" was the most applied for patents. Through this, it was found that in order to apply for a patent for a smart factory, it would be necessary to file a patent application that takes into account the connectivity between IPCs.

A Study on Social and Environmental Factors Affecting Traffic Behavior and Public Transportation according to COVID-19 (COVID-19에 따른 통행행태 분석 및 대중교통 이용특성에 영향을 주는 사회·환경 요인 연구)

  • Byoung-Jo Yoon;Hyo-Sik Hwang;Sung-Jin Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 2024
  • Purpose: The purpose of this study is to study how to activate the use of public transportation by identifying the main factors that reduce the use of public transportation due to external influences such as COVID-19 infectious diseases. Method: This study analyzed the connection between the traffic behavior and the characteristics of public transportation use in the metropolitan area changed by COVID-19 with COVID-19 indicators, and analyzed social and environmental factors affecting traffic. Results: It was analyzed that the traffic behavior in the metropolitan area moves from commercial areas to tourist resort areas, the number of COVID-19 deaths affects the use of public transportation, and the lower the deviation between population density, agricultural and forestry areas, and gender ratios due to social and environmental factors, the more significant differences are shown. Conclusion: In the future, it will be able to be activated as a basic analysis model for revitalizing the city's transportation system, regional bases, and various social and economic indicators, such as quarantine of public transportation and social distancing, and can be used as basic data for establishing public transport policy directions according to major influencing factors.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.