• Title/Summary/Keyword: nerve electrode

Search Result 82, Processing Time 0.027 seconds

Implantable Nerve Cuff Electrode with Conductive Polymer for Improving Recording Signal Quality at Peripheral Nerve (말초 신경 신호 기록의 효율성 개선을 위한 전도성 폴리머가 적용된 생체삽입형 커프형 신경전극)

  • Park, Sung Jin;Lee, Yi Jae;Yun, Kwang-Seok;Kang, Ji Yoon;Lee, Soo Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2015
  • This study demonstrates a polyimide nerve cuff electrode with a conductive polymer for improving recording signal quality at peripheral nerve. The nerve cuff electrodes with platinum (Pt), iridium oxide (IrOx), and poly(3,4-ethylenedioxythiophene): p-toluene sulfonate (PEDOT:pTS) were fabricated and investigated their electrical characteristics for improving recorded nerve signal quality. The fabricated nerve cuff electrodes with Pt, IrOx, and PEDOT:pTS were characterized their impedance and CDC by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The impedance of PEDOT:pTS measured at 1 kHz was $257{\Omega}$, which was extremely lower than the value of the nerve cuff electrodes with IrOx ($15897{\Omega}$) and Pt ($952{\Omega}$), respectively. Furthermore, the charge delivery capacity (CDC) of the nerve cuff electrode with PEDOT:pTS was dramatically increased to 62 times than the nerve cuff electrode with IrOx. In ex-vivo test using extracted sciatic nerve of spaque-dawley rat (SD rat), the PEDOT:pTS group exhibited higher signal-to-interference ratio than IrOx group. These results indicated that the nerve cuff electrode with PEDOT:pTS is promising for effective implantable nerve signal recording.

Study of Laryngeal Evoked Electromyography Method in Rats (백서를 이용한 후두 유발 근전도 검사 방법에 대한 연구)

  • 조선희;이재연;민선식;신유리;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.2
    • /
    • pp.178-184
    • /
    • 2000
  • Laryngeal evoked EMG is the objective and quantitative method to measure the innervation of laryngeal muscle. If there is a mobility disorder of vocal cords, the cause and location of neural lesion co be understood by the laryngeal evoked EMG and if there is a vocal cord paralysis, the degree of recovery and the policy of treatment can be determined by it. Recently, the studies of reinnervation after recurrent laryngeal nerve injury have been actively carried out. Laryngeal evoked EMC is useful to these studies. The aim of study is to know whether noninvasive methods for stimulating the recurrent laryngeal nerve and for recording of compound action potential(CAP) using surface electrode are as useful as the invasive method using needle electrode. We obtained EMG of laryngeal muscle by various stimulating and recording methods : 1) Direct nerve stimulation by placing nerve cuff electrode made out of silastic tube and platinum wire and recording by insertion of hook wire electrode into posterior cricoarytenoid(PCA) and thyroarytenoid(TA) muscles, respectively. 2) Recording of compound action potential by surface electrode after stimulation of recurrent laryngeal nerve by the insertion of 27 gauge of needle electrode. 3) Recording of compound action potential by surface electrode after stimulating the recurrent laryngeal nerve by transcutaneous blunt rod electrode at tracheoesophageal groove. The amplitude, duration and latency of the CAP evoked by recurrent laryngeal nerve stimulation were compared among the three groups. The amplitude of CAP was smallest in the group recorded from posterior cricoarytenoid and hyroarytenoid muscle, and that recorded by surface electrode after stimulation by needle electrode was largest. The difference in amplitude between the group by hook wire recording and the two groups by surface electrode recording was significant statistically. There is no significant difference in duration and latency among three groups. Since the waveform of CAP from all three methods has similar duration, latency, we concluded that noninvasive method is a useful as invasive methods.

  • PDF

The Effects of the Stimulation Intensity and Inter-Electrode Distance on the Parameters of the Measured Sensory Nerve Signal (전기자극의 강도와 측정전극의 간격이 감각신경신호의 파라미터에 미치는 영향 연구)

  • Lim, Kyeong Min;Song, Tongjin
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.234-241
    • /
    • 2014
  • This study was designed to investigate the effects of stimulation intensity and inter-electrode distance on the parameters of the measured sensory nerve signal. 30 healthy subjects participated in this study. Sensory nerve signals were elicited by four different pulse amplitudes, i.e., 3, 6, 9, 12 mA, with the pulse width fixed at $500{\mu}s$. The sensory nerve signals elicited by the four different pulse amplitudes were measured by four different inter-electrode distances (20, 30, 40, and 50 mm). We extracted four parameters (pulse amplitude, pulse width, pulse area, and latency time from stimulation) from the sensory nerve signals. The measured pulse amplitude and pulse width were increased when the measuring inter-electrode distance was increased while the stimulating pulse amplitude was fixed. The measured pulse amplitude was saturated with the stimulating pulse amplitudes of over 6 mA while measuring inter-electrode distance. Under the same condition, measured pulse width was increased, and sensory nerve signal was initiated early. Sensory nerve signals, specially those of pulse amplitude, were distorted by a differential amplification method that commonly measures the human body signal. The experimental results indicate that the differential amplification method is required to be replaced when measuring nerve signals. Our observations suggested that the hyperpolarization of the action potential of the sensory nerve signal for preventing distortion could be used to clarify the correlation between the parameters of the sensory nerve signals and quantification of sensations.

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.

Recording and Analysis of Peripheral Nerve Activity Using Multi-Electrode Array (다채널 신경전극 어레이를 이용한 말초 신경신호의 측정 및 분석)

  • Chu, Jun-Uk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2016
  • Reliable recording and analysis of peripheral nerve activity is important to recognize the user's intention for controlling a neuro-prosthetic hand. In this paper, we present a peripheral nerve recording system that consisted of an intrafascicular multi-electrode array, an electrode insertion device, and a multi-channel neural amplifier. The 16 channel multi-electrode array was stably implanted into the sciatic nerve of the rat under anesthesia using the electrode insertion device. During passive movements and mechanical stimuli, muscle and cutaneous afferent signals were recorded with the multi-channel neural amplifier. Furthermore, we propose a spike sorting method to isolate individual neuronal unit. The muscle proprioceptive units were classified as muscle spindle afferents or Golgi tendon organ afferents, and the skin exteroceptive units were categorized as slow adapting afferents or fast adapting afferents. Experimental results showed that the proposed method could be applicable to record and analyze peripheral nerve activity in neuro-prosthetic systems.

Sensory Nerve Conduction Velocity of Median Proper Palmar Digital Nerve Recorded by Bar Electrode (막대전극을 이용하여 기록한 정중고유손바닥쪽 손가락신경의 감각신경전도속도)

  • Kwak, Kyo Ho;Lee, Dong Kuck
    • Annals of Clinical Neurophysiology
    • /
    • v.2 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • Background: There has been few electrophysiologic studies in median proper palmar digital nerve(PPDN). Bar electrode may be a useful tool to evaluate the pathophysiologic state of the distal peripheral nerves. Objectives : To evaluate sensory nerve conduction velocities(NCVs) of median PPDNs in normal controls and carpal tunnel syndrome(CTS) patients by bar electrode, and clarify the usefulness of the bar electrode. Methods : We checked NCV of each median PPDN of thumb(D1), index(D2) and middle finger(D3) in normal controls(68 hands) and CTS patients(95 hands) by bar electrode. The each mean NCV of both groups were compared to find the correlation between them. Results : The mean NCV of each median PPDN in control group were $38.7{\pm}4.2$(D1), $32.0{\pm}4.6$(D2), $34.2{\pm}4.4$(D3) m/sec, and in CTS group were $35.3{\pm}8.9$(D1), $20.2{\pm}5.2$(D2), $20.2{\pm}5.1$(D3) m/sec orderly. There were significant differences between mean NCV of each finger in control group(p=0.0001), but not between each left and right finger(p>0.05). The differences between each mean NCV of control and CTS were significant in all 3 fingers(p=0.0014, 0.0000, 0.0000). Conclusion : Bar electrode is a useful tool to evaluate the pathophysiologic state of the median PPDNs in normal controls and CTS patients.

  • PDF

Development of the Novel Intraoperative Neuromonitoring for Thyroid Surgery (갑상선 수술을 위한 새로운 수술 중 신경감시시스템의 개발)

  • Sung, Eui Suk;Lee, Byung Joo
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2018
  • It is very important to identify recurrent laryngeal nerve (RLN) and prevent RLN injury during thyroid surgery. The intraoperative neuromonitoring (IONM) for the prevention of RLN injury is a useful method because it can identify the location and status of RLN and predict postoperative vocal cord function easily. The IONM consists of a stimulating side that applies electrical stimulation to the nerve and a recording side that measures the surface electromyography (EMG) of the vocal cord muscle through electrode endotracheal tube. The nerve stimulator and surgical dissector are separate instruments. So, during IONM for the prevention of the RLN injury in conventional, endoscopic, or robotic thyroid surgery, repeated exchanging between surgical instruments and the nerve stimulator is inconvenient and time consuming. On the recording side, the accuracy of the electrode endotracheal tube which measures the EMG of the vocalis muscle can be affected by contact with between electrode and vocal fold and position change of patient. We would like to introduce recent several researches to overcome the current limitations of IONM.

The Influence of the Reference Electrode on Compound Muscle Action Potential Onset Latency and Amplitude (복합근육활동전위의 시작잠복기와 진폭에 대한 기준전극의 영향)

  • Lee, Sang-Moo;Choi, Heui-Chul;Son, Jong-Hee
    • Annals of Clinical Neurophysiology
    • /
    • v.12 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Background: In belly-tendon (bipolar) montage, reference (R2) electrode placed on muscle's tendon has traditionally been considered to be electrically inactive. However, recent studies have revealed that R2 electrode is not simply referential, but actively contributes to compound muscle action potential (CMAP) waveform morphology. These findings suggest that CMAP onset latency and amplitude may also be influenced by the position of R2 electrode. This study was performed in order to evaluate the effect of R2 electrode position on CMAP onset latency and amplitude. Methods: We performed motor nerve conduction studies of median, ulnar, tibial and peroneal nerves on bilateral limbs of 20 normal subjects. We used traditional bipolar and monopolar montage and compared their CMAP onset latencies and amplitudes. In bipolar montage, recording (R1) electrode was placed on mid-belly of muscle with R2 electrode on the tendon of the muscle. In monopolar montage, R1 electrode was placed on the same site of bipolar montage, while R2 electrode was placed on the contralateral limb. Results: The mean CMAP onset latencies of median and peroneal nerves in bipolar montage were significantly different (p<0.05) with those in monopolar montage. And those of ulnar and tibial nerves were not significantly different (p>0.05). The mean CMAP amplitudes of all the tested nerves except ulnar nerve were significantly different (p<0.05). Conclusions: This study shows that change in R2 electrode position can affect the CMAP onset latency and amplitude, and these differences seem to be related to the generation of far field potential by CMAP.

Permanent Peripheral Nerve Stimulation for Chronic Occipital Neuralgia -Case reports- (만성 후두통을 영구적 후두신경자극기로 치료한 경험 -증례보고-)

  • Park, Chan Hong;Huh, Billy K
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.155-158
    • /
    • 2008
  • This report presents the application of occipital nerve stimulation in two patients with severe and disabling bilateral occipital neuralgia. Pain persisted despite the use of several procedures and the administration of medication in the patients. The patients underwent peripheral nerve stimulation for the treatment of headache. Peripheral nerve stimulation was accomplished via implantation of a subcutaneous electrode to stimulate the peripheral nerve in the occipital area. The patients reported a 90% improvement in overall pain. These cases illustrate the possible utilization of peripheral nerve stimulation for the treatment of occipital neuralgia.

A Study on Neuroactive Response Measurement Platform using Mechano Sensor (Mechano sensor를 이용한 신경자극반응 측정 플랫폼에 관한 연구)

  • Kim, Woo-Ram;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.198-201
    • /
    • 2012
  • This is a study about a platform realization measuring the extent of reaction in nerve, as giving a electrical impulse on a nerve pulp regulating a function of muscle, about a measurement of nerve reaction in the amount of current, the lasting time of current, and the position of electrode from a electrical impuls. The position of an electrode in a electrical nerve impuls have nothing to do with all nerves from exercise to all things. There is the Single Twitch Stimulation, Train-of-four, and Double Burst Stimulation in the form of nerve stimulation. This report is needed for selecting MCU of low electric power for a base in embedded system and measuring the extent of reaction after making a sensor interface to know sensitivity of measuring sensor in basic reaction of nerve impuls. The platform is realized to select a high efficiency AD Convertor for raising accuracy in measured data. As the platform in this report was developed for a medical appliances, it was designed to consider user safety in electric power Isolation when making electric power circuit.

  • PDF