• Title/Summary/Keyword: nematic display

Search Result 266, Processing Time 0.022 seconds

Liquid Crystal Aligning Capabilities Treated on Organic Overcoat Thin Films by Ion Beam Irradiation Method

  • Han, Jeong-Min;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Han, Jin-Woo;Hwang, Jeoung-Yeon;Lee, Sang-Keuk;Kang, Dong-Hun;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • The liquid crystal display (LCD) applications treated on the organic overcoat thin film surfaces by ion beam irradiation was successfully studied. The good LC aligning capabilities treated on the organic overcoat thin film surfaces with ion beam exposure of $60^{\circ}$ for 2 min above ion beam energy of 1200 eV can be achieved. But, the alignment of defect of NLC on the organic overcoat surface at low energy of 600 eV was measured. The pretilt angle of NLC on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min at energy of 1800 eV was measured about 1 degree. Finally, the good thermal stability of LC alignment on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min until annealing temperature of $200^{\circ}C$ can be measured.

Liquid Crystal Alignment Effect and Electro-Optical Characteristics of TN-LCD on a-C:H Thin Films (a-C:H 박막을 이용한 액정 배향 효과 및 TN-LCD 의 전기광학 특성)

  • Hwang, Jeong-Yeon;Jo, Yong-Min;Rho, Soon-Jun;Baik, Hong-Koo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.124-127
    • /
    • 2002
  • LC aligning capabilities and the variation of pretilt angles with ion beam irradiation on the a-C:H thin films, and electro-optical (EO) performances of the ion beam aligned twisted nematic (TN)-liquid crystal display (LCD) with oblique ion beam exposure on the a-C:H thin film were studied. A high pretilt angle of $3.5{^{\circ}}$ via ion beam irradiation on the a-C:H thin film was measured. Also, the LC pretilt angle decreased due to the increase in surface roughness at over 2 min of IB exposure time. It is considered that this roughness increase due to increasing IB exposure time that generated destroy of oriented rings of atoms related to LC alignment. An excellent voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD was observed with oblique ion beam exposure on the a-C:H thin film for 1 min. Also, a faster response time for the ion beam aligned TN-LCD with oblique ion beam exposure on the a-C:H thin film for 1 min can be achieved. Finally, the residual DC property of the ion beam aligned TN-LCD with ion beam exposure of 1 min on the a-C:H thin film is almost same as that of the rubbing aligned TN-LCD on a PI surface.

  • PDF

Electro-optical characteristic analysis of liquid crystal cell using UV-treated self assembled monolayer (UV 처리된 자기 조립 단분자막을 사용한 액정 셀의 전기광학특성 분석)

  • Chan-Woo Oh;Hong-Gyu Park
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2023
  • In this paper, we demonstrated the orientation characteristics of liquid crystals using UV-treated FSAM as alignment layer. Moreover we confirmed the FSAM properties before and after UV treatment on indium tin oxide (ITO) glass substrates using physicochemical analysis. The hydrophobic property of the FSAM surface is change to hydrophilic through UV treatment. After UV treatment the LC molecules also were uniformly and horizontally aligned on the FSAM surfaces and the pretilt angle was obviously changed 90° degrees to 0° degrees. EO characteristic of TN cell which was fabricated with UV-treated FSAM was faster response time compare to conventional PI layer. The FSAM before and after UV treatment has a superior application potential as the LC alignment layer for LCD, potentially replacing the conventional polyimide layer.

Holographic phase gratings in back- and frontlights for LCD's

  • Bastiaansen, C.W.M.;Heesch, C. van;Broer, D.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.421-421
    • /
    • 2006
  • The light and energy-efficiency of classical liquid crystal displays is notoriously poor due to the use of absorption-based linear polarisers and colour filters. For instance, the light efficiency of PVAL polarisers is typically between 40 and 45 % and the colour filters have a typical efficiency below 35 % which results in a total light and energy-efficiency of the display below 10 %. In the past, a variety of polarizers were developed with an enhanced efficiency in generating linearly polarized light. Typically, these polarizers are based on the polarisationselective reflection, scattering or refraction of light i.e. one polarisation direction of light is directly transmitted to the LCD/viewer and the other polarization direction of light is depolarised and recycled which results in a typical efficiency for generating linearly polarized light of 70-85 %. Also, special colour filters have been proposed based on chiral-nematic reactive mesogens which increase the efficiency of generating colour. Despite the enormous progress in this field, a need persists for improved methods for generating polarized light and colour based on low cost optical components with a high efficiency. Here, the use of holographic phase gratings is reported for the generation of polarized light and colour. The phase grating are recorded in a photopolymer which is coated onto a backor frontlight for LCDs. Typically the recording is performed in the transmisson mode or in the waveguiding mode and slanted phase gratings are generated with their refractive index modulation at an angle between 20o and 45o with the normal of the substrate. It is shown that phase gratings with a high refractive index modulation and a high efficiency can be generated by a proper selection of the photopolymer and illumination conditions. These phase gratings coupleout linearly polarized light with a high contrast (> 100) and the light is directed directly to the LCD/viewer without the need for redirection foils. Dependent on the type of phase grating, the different colours are coupled-out at a slightly different angle which potentially increases the efficiency of classical colour filters. Moreover, the phase gratings are completely transparent in direct view which opens the possibility to use them in frontlights for LCDs. Holographic polarization gratings posses a periodic pattern in the polarization state of light (and not in the intensity of light). A periodic pattern in the polarization direction of linearly polarized light is obtained upon interference of two circularly polarized laser beams. In the second part of the lecture, it is shown that these periodic polarization patterns can be recorded in a linear photo-polymerizable polymer (LPP) and that such an alignment layer induces a period rotation in the director of (reactive and non-reactive) liquid crystals. By a proper design, optical components can be produced with only first order diffraction and with a very high efficiency (>0.98). It is shown that these diffraction gratings are potentially useful in projection displays with a high brightness and energy efficiency

  • PDF

The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups

  • Hahm, Suk-Gyu;Jin, Kyeong-Sik;Park, Sam-Dae;Ree, Moon-Hor;Kim, Hyung-Sun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.976-986
    • /
    • 2009
  • With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.

Thermotropic Liquid Crystalline Behavior of Hydroxypropyl Celluloses Bearing Cholesteryl and Nitroazobenzene Groups (콜레스테릴과 니트로아조벤젠 그룹을 지닌 히드록시프로필 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.446-457
    • /
    • 2008
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives: 6- (cholesteryloxycarbonyl) pentoxypropyl celluloses(CHPCs) with degree of esterification(DE) ranging from 0.6 to 3, 6-[4-{4'-(nitrophenylazo)phenoxycarbonyl}] pentoxypropyl celluloses (NHPCs) with DE ranging from 0.4 to 3, and fully 6-(cholesteryloxycarbonyl) pentanoated NHPCs (CNHPCs) were synthesized, and their thermotropic liquid crystalline properties were investigated. All the CHPCs and NHPCs with $DE{\leq}1.7$ formed enantiotropic cholesteric phases, whereas CNHPCs with 6-(cholesteryloxycarbonyl) pentanoyl DE(DEC) more than 1.6 exhibited monotropic cholesteric phases. On the other hand, NHPCs with $DE{\geq}2.4$ and CNHPCs with $DEC{\leq}1.3$ showed monotropic nematic phases. NHPCs with $DE{\leq}l$, as well as HPC, formed right-handed helices whose optical pitches (${{\lambda}_m}'s$) increase with temperature, while all the CHPCs formed left-handed helices whose ${{\lambda}_m}'s$ decrease with temperature. In contrast with these derivatives, NHPCs with $1.4{\leq}DE{\leq}1.7$ and CNHPCs with $DEC{\geq}1.6$ did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cellulose chain and the cholesteryl group highly depends on the chemical structure and DE of mesogenic group.