Browse > Article

The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups  

Hahm, Suk-Gyu (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology)
Jin, Kyeong-Sik (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology)
Park, Sam-Dae (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology)
Ree, Moon-Hor (Department of Chemistry, Pohang Accelerator Laboratory, National Research Laboratory for Polymer Synthesis and Physics, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, Division of Advanced Materials Science, and Polymer Research Institute, Pohang University of Science & Technology)
Kim, Hyung-Sun (School of Materials Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Kwon, Soon-Ki (School of Materials Science and Engineering and Engineering Research Institute, Gyeongsang National University)
Kim, Yun-Hi (Department of Chemistry & RINS, Gyeongsang National University)
Publication Information
Macromolecular Research / v.17, no.12, 2009 , pp. 976-986 More about this Journal
Abstract
With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.
Keywords
aromatic polyimides; nanoscale thin films; liquid crystals; rubbing process; surface chain orientation; surface topography; microgrooves; anisotropic molecular interaction; liquid crystal orientation; optical retardation; azimuthal anchoring energy; polar anchoring energy;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, W.-S. Kwon, K. Kim, O. Kim, and M. Ree, Adv. Funct. Mater., 18, 3276 (2008)   DOI   ScienceOn
2 T. J. Shin and M. Ree, Langmuir, 21, 6081 (2005)   DOI   ScienceOn
3 J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K.-W. Lee, J. Polym. Sci. Part B: Polym. Phys., 37, 2806 (1999)   DOI   ScienceOn
4 S. M. Pyo, S. I. Kim, T. J. Shin, Y. H. Park, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 37, 937 (1999)   DOI   ScienceOn
5 M. Ree, K. Kim, S. H. Woo, and H. Chang, J. Appl. Phys., 81, 698 (1997)   DOI   ScienceOn
6 Y. Kim, M. Ree, T. Chang, C. S. Ha, T. L. Nunes, and J. S. Lin, J. Polym. Sci. Part B: Polym. Phys., 33, 2075 (1995)   DOI   ScienceOn
7 Y. Kim, M. Ree, T. Chang, and C. S. Ha, Polym. Bulln., 34, 175 (1995)   DOI   ScienceOn
8 M. Ree, C. W. Chu, and M. J. Goldberg, J. Appl. Phys., 75, 1410 (1994)   DOI   ScienceOn
9 M. Ree, S. Swanson, and W. Volksen, Polymer, 34, 1423 (1993)   DOI   ScienceOn
10 S. I. Kim, T. J. Shin, M. Ree, G. T. Hwang, B. H. Kim, H. Han, and J. Seo, J. Polym. Sci. Part A: Polym. Chem., 37, 2013 (1999)   DOI   ScienceOn
11 Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004)
12 S. W. Kang, Macromol. Res., 15, 487 (2007)   DOI
13 J. K. Lee, S. J. Lee, J. C. Jung, W.-C. Zin, T. Chang, and M. Ree, Polym. Adv. Technol., 17, 444 (2006)   DOI   ScienceOn
14 S. J. Lee, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 42, 3130 (2004)   DOI   ScienceOn
15 S. W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim, S. I. Kim, S.-M. Park, J. C. Jung, K. H. Lee, and M. Ree, Chem. Mater., 15, 3105 (2003)   DOI   ScienceOn
16 S. I. Kim, S. M. Pyo, M. Ree, M. Park, and Y. Kim, Mol. Cryst. Liq. Cryst., 316, 209 (1998)   DOI
17 S. G. Hahm, T. J. Lee, and M. Ree, Adv. Funct. Mater., 17, 1359 (2007)   DOI   ScienceOn
18 D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972)   DOI
19 M. P. Mahajan and C. Rosenblatt, J. Appl. Phys., 83, 7649 (1998)   DOI   ScienceOn
20 B. Chae, S. W. Lee, M. Ree, and S. B. Kim, Vibrational Spectro., 29, 69 (2002)   DOI   ScienceOn
21 S. G. Hahm, T. J. Lee, S. W. Lee, J. Yoon, and M. Ree, Mater. Sci. Eng. B, 132, 54 (2006)   DOI   ScienceOn
22 S. W. Lee, H. C. Kim, B. Lee, T. Chang, and M. Ree, Macromolecules, 36, 9905 (2003)   DOI   ScienceOn
23 J. C. Dubois, M. Gazard, and A. Zann, J. Appl. Phys., 47, 1270 (1975)   DOI   ScienceOn
24 K. Miyano, Phys. Rev. Lett., 43, 51 (1979)   DOI
25 Y.-H. Kim, S.-K. Ahn, H. S. Kim, and S.-K. Kwon, J. Polym. Sci. Part A: Polym. Chem., 40, 4288 (2002)   DOI   ScienceOn
26 X. Nie, Y.-H. Lin, T. X. Wu, H. Wang, Z. Ge, and S.-T. Wu, J. Appl. Phys., 98, 013156 (2005)
27 R. A. Chipman, Eds., Handbook of Optics II, McGraw-Hill, New York, 1995
28 W. H. Goh, K. Kim, and M. Ree, Korea Polym. J., 6, 241 (1998)
29 M. Ree, S. I. Kim, S. M. Pyo, T. J. Shin, H. K. Park, and J. C. Jung, Macromol. Symp., 142, 73 (1999)   DOI
30 P. G. de Gennes, W. Marshall, and D. H. Wilkinson, Eds., Physics of Liquid Crystals, Oxford, Clarendon, 1974
31 S. I. Kim, M. Ree, T. J. Shin, C. Lee, T.-H. Woo, and S. B. Rhee, Polymer, 41, 5173 (2000)   DOI   ScienceOn
32 G. Y. Lee, H. N. Jang, and W. T. Jung, et al., Macromol. Res., 16, 741 (2008)   DOI
33 J. Yu, M. Ree, Y. H. Park, T. J. Shin, W. Cai, D. Zhou, and K.-W. Lee, Macromol. Chem. Phys., 201, 491 (2000)   DOI   ScienceOn
34 P. J. Collings and J. S. Patel, Eds., Handbook of Liquid Crystal Research, Oxford University Press, Oxford, 1997
35 S. G. Hahm, T. J. Lee, T. Chang, J. C. Jung, W.-C. Zin, and M. Ree, Macromolecules, 39, 5385 (2006)   DOI   ScienceOn
36 S. B. Lee, G. J. Shin, J. H. Chi, W.-C. Zin, J. C. Jung, S. G. Hahm, M. Ree, and T. Chang, Poymer, 47, 6606 (2006)
37 K. Sakamoto, R. Arafune, S. Ushioda, Y. Suzuki, and S. Morokawa, Appl. Surf. Sci., 100-101, 124 (1996)   DOI   ScienceOn
38 J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, J. Appl. Phys., 62, 4100 (1987)   DOI
39 M. F. Toney, T. P. Russell, J. A. Logan, H. Kikuchi, J. M. Sands, and S. K. Kumar, Nature, 374, 709 (1995)   DOI   ScienceOn
40 J. Stohr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. A. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidll, Science, 292, 2299 (2001)   DOI   PUBMED   ScienceOn
41 Y. B. Kim and B. S. Ban, Liq. Cryst., 26, 1579 (1999)   DOI   ScienceOn
42 Y. Kim, E. Kang, Y. S. Kwon, W. J. Cho, C. Chang, M. Ree, T. Chang, and C. S. Ha, Synthetic Metals, 85, 1399 (1997)   DOI   ScienceOn
43 M. Ree, T. J. Nunes, and J. S. Lin, Polymer, 35, 1148 (1994)   DOI   ScienceOn
44 S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 38, 4331 (2005)   DOI   ScienceOn
45 S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001)   DOI   ScienceOn
46 S. I. Kim, T. J. Shin, M. Ree, and J. C. Jung, J. Soc. Inform. Display, 8, 61 (2000)   DOI
47 M. Ree, K. J. Chen, and T. L. Nunes, J. Polym. Sci. Part B: Polym. Phys., 33, 453 (1995)   DOI   ScienceOn
48 J. Cognard, Eds., Alignment of Liquid Crystals and Their Mixtures, Gorden & Breach, London, 1982
49 A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007)   DOI
50 M. B. Feller, W. Chen, and Y. R. Shen, Phys. Rev. A, 43, 6778 (1991)   DOI   ScienceOn
51 J. C. Jung, K. H. Lee, B. H. Sohn, S. W. Lee, and M. Ree, Macromol. Symp., 164, 227 (2001)   DOI   ScienceOn
52 M. Ree, T. J. Shin, and S. W. Lee, Korea Polym. J., 9, 1 (2001)
53 B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003)   DOI   ScienceOn
54 E. S. Lee, P. Vetter, T. Miyashita, T. Uchida, M. Kano, M. Abe, and K. Sugawara, Jpn. J. Appl. Phys., 32, L1436 (1993)   DOI   ScienceOn
55 M. E. Becker, R. A. Killan, B. B. Kosmowski, and D. A. Mlynski, Mol. Cryst. Liq. Cryst., 132, 167 (1986)   DOI   ScienceOn
56 S. W. Lee and M. Ree, J. Polym. Sci. Part B: Polym. Chem., 42, 1322 (2004)   DOI   ScienceOn
57 J. Y. Lee, J. H. Kim, and B. K. Rhee, Macromol. Res., 15, 234 (2007)   DOI
58 S. G. Hahm, S. W. Lee, J. Suh, B. Chae, S. B. Kim, S. J. Lee, K. H. Lee, J. C. Jung, and M. Ree, High Preform. Polym., 18, 549 (2006)   DOI   ScienceOn
59 B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002)   DOI   ScienceOn
60 M. Kim, S. Choi, M. Ree, and O. Kim, IEEE Electron Device Lett., 28, 967 (2007)   DOI   ScienceOn
61 T. J. Shin and M. Ree, Macromol. Chem. Phys., 203, 781 (2002)
62 T. J. Shin, B. Lee, H. S. Youn, K.-B. Lee, and M. Ree, Langmuir, 17, 7842 (2001)   DOI   ScienceOn
63 K.-W. Lee, S.-H. Paek, A. Lien, C. During, and H. Fukuro, Macromolecules, 29, 8894 (1996)   DOI   ScienceOn
64 J. H. Park, B.-H. Sohn, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci. Part B: Polym. Chem., 39, 1800 (2001)   DOI   ScienceOn
65 S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, Y. N. Rim, H. J. Yoon, H. C. Kim, and Y. B. Kim, Mol. Cryst. Liq. Cryst., 349, 279 (2000)   DOI
66 A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, J. Vac. Sci. Technol. A, 14, 1723 (1996)   DOI   ScienceOn
67 M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci. Part B: Polym. Phys., 29, 1203 (1991)   DOI
68 J. Kim and S. Kumar, Phys. Rev. E, 57, 5644 (1998)   DOI   ScienceOn
69 T. Uchida, M. Hirano, and H. Sakai, Liq. Cryst., 5, 1127 (1989)   DOI
70 S. W. Lee, B. Chae, S. G. Hahm, B. Lee, S. B. Kim, and M. Ree, Polymer, 45, 4068 (2005)
71 B. Chae, S. W. Lee, S. B. Kim, B. Lee, and M. Ree, Langmuir, 19, 6039 (2003)   DOI   ScienceOn
72 G. Barbero, L. R. Evangelista, and N. V. Madhusudana, Eur. Phys. J., 1, 327 (1998)
73 M. G. Samant, J. Stohr, H. R. Brown, T. P. Russell, J. M. Sands, and S. K. Kumar, Macromolecules, 29, 8334 (1996)   DOI   ScienceOn
74 D. Johannsmann, H. Zhou, P. Sonderkaer, H. Wierenga, B. O. Myrvold, and Y. R. Shen, Phys. Rev. E, 48, 1889 (1993)   DOI
75 M. Ree, K. J. Chen, D. P. Kirby, N. Katzenellenbogen, and D. Grischkowsky, J. Appl. Phys., 72, 2014 (1992)   DOI
76 S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 368, 559 (2001)   DOI   ScienceOn
77 S. W. Lee, B. Chae, H. C. Kim, B. Lee, W. Choi, S. B. Kim, T. Chang, and M. Ree, Langmuir, 19, 8735 (2003)   DOI   ScienceOn
78 H.-S. Kim, Y.-H. Kim, S.-K. Ahn, and S.-K. Kwon, Macromolecules, 36, 2327 (2003)   DOI   ScienceOn
79 Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004)   DOI   ScienceOn
80 T. J. Lee, S. G. Hahm, S. W. Lee, B. Chae, S. J. Lee, G. Kim, S. B. Kim, J. C. Jung, and M. Ree, Mater. Sci. Eng. B, 132, 64 (2006)   DOI   ScienceOn
81 D. C. Flanders, D. C. Shaver, and H. I. Smith, Appl. Phys. Lett., 32, 597 (1978)   DOI
82 J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, 33 (1983)   DOI
83 M. Ree, W. H. Goh, J. W. Park, M. H. Lee, and S. B. Rhee, Polym. Bulln., 35, 129 (1995)   DOI   ScienceOn
84 S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci. Part A: Polym. Chem., 37, 2909 (1999)   DOI   ScienceOn
85 S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003)   DOI   ScienceOn
86 D. Kim, M. Oh-e, and Y. R. Shen, Macromolecules, 34, 9125 (2001)   DOI   ScienceOn
87 Y. A. Nastishin, R. D. Polak, S. V. Ahiyanovski, V. H. Bodnar, and O. D. Lavrentovich, J. Appl. Phys., 86, 4199 (1999)   DOI
88 K. Sakamoto, R. Arafune, N. Ito, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys., 80, 431 (1996)   DOI   ScienceOn
89 B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003)   DOI   ScienceOn
90 G. Durand, Physica A, 163, 94 (1990)   DOI   ScienceOn
91 S. G. Hahm, S. W. Lee, T. J. Lee, S. A. Cho, B. Chae, Y. M. Jung, S. B. Kim, and M. Ree, J. Phys. Chem. B, 112, 4900 (2008)   DOI   ScienceOn
92 S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003)   DOI   ScienceOn
93 M. Ree, S. I. Kim, and S. W. Lee, Synthetic Metals, 117, 273 (2001)   DOI   ScienceOn
94 V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev. E, 49, R990 (1994)   DOI   ScienceOn
95 S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, J. C. Kim, W.-S. Kwon, K. Kim, M.-J. Kim, O. Kim, and M. Ree, J. Mater. Chem., 19, 2207 (2009)   DOI   ScienceOn
96 M. Ree, W. H. Goh, and Y. Kim, Polym. Bull., 35, 215 (1995)   DOI   ScienceOn
97 N. A. J. van Aerle and J. W. Tol, Macromolecules, 27, 6520 (1994)   DOI   ScienceOn
98 S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 349, 271 (2000)   DOI
99 J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.-Y. Wang, F. W. Harris, S. Z. D. Cheng, S.-C. Hong, X. Zhuang, and Y. R. Shen, J. Am. Chem. Soc., 123, 5768 (2001)   DOI   ScienceOn
100 B. S Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000)   DOI   ScienceOn
101 T. J. Shin and M. Ree, J. Phys. Chem. B, 111, 13894 (2007)   DOI   ScienceOn
102 M. Ree, T. J. Shin, Y. H. Park, H. Lee, and T. Chang, Korea Polym. J., 7, 370 (1999)
103 Y. Kim, C. S. Ha, T. Chang, W.-K. Lee, W. Goh, H. Kim, Y. Ha, and M. Ree, J. Nanosci. Nanotechnol., 9, 1533 (2009)
104 M. Ree, H. Han, and C. C. Gryte, J. Polym. Sci. Part B: Polym. Phys., 33, 505 (1995)   DOI   ScienceOn
105 H. Kikuchi, J. A. Logan, and D. Y. Yoon, J. Appl. Phys., 79, 6811 (1996)   DOI
106 M. Born and E. Wolf, Eds., Principle of Optics, Pergamon, Oxford, 1980
107 M. Ree, T. L. Nunes, G. Czornyj, and W. Volksen, Polymer, 33, 1228 (1992)   DOI   ScienceOn
108 J. H. Park, J. C. Jung, B. H. Sohn, S. W. Lee, and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 39, 3622 (2001)   DOI   ScienceOn
109 A. Sugimua, N. Yamanoto, and T. Kawamura, Jpn. J. Appl. Phys., 20, 1343 (1981)   DOI
110 K. Weiss, C. Woll, E. Bohm, B. Fiebranz, G. Forstmann, B. Peng, V. Scheumann, and D. Johannsmann, Macromolecules, 31, 1930 (1998)   DOI   ScienceOn
111 Y. Kim, W. K. Lee, W. J. Cho, C. S. Ha, M. Ree, and T. Chang, Polym. Internl., 43, 129 (1997)   DOI   ScienceOn
112 M. Ree, K.-R. J. Chen, and G. Czornyj, Polym. Eng. Sci., 32, 924 (1992)   DOI
113 T. J. Shin, H. K. Park, S. W. Lee, B. Lee, W. Oh, J.-S. Kim, S. Baek, Y.-T. Hwang, H.-C. Kim, and M. Ree, Polym. Eng. Sci., 46, 1232 (2003)
114 I. S. Chung, C. E. Park, M. Ree, and S. Y. Kim, Chem. Mater., 13, 2801 (2001)   DOI   ScienceOn
115 B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, Langmuir, 19, 9459 (2003)   DOI   ScienceOn
116 M. Nakamura and M. Ura, J. Appl. Phys., 52, 210 (1981)   DOI   ScienceOn
117 N. Mori, M. Morimoto, and K. Nakamura, Macromolecules, 32, 1488 (1999)   DOI   ScienceOn