• 제목/요약/키워드: neighbor selection

검색결과 130건 처리시간 0.025초

Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

  • Kim, Seungchang;Cheong, Hyun Sub;Shin, Hyoung Doo;Lee, Sung-Soo;Roh, Hee-Jong;Jeon, Da-Yeon;Cho, Chang-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권11호
    • /
    • pp.1691-1699
    • /
    • 2018
  • Objective: In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods: Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results: Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average $r^2$ value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, interpopulation, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion: Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity.

라이다 자료를 이용한 하천지역 인공 제방선 추출 (Construction of a artificial levee line in river zones using LiDAR Data)

  • 정윤재;박현철;조명희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

Determination of Genetic Diversity among Korean Hanwoo Cattle Based on Physical Characteristics

  • Choi, T.J.;Lee, S.S.;Yoon, D.H.;Kang, H.S.;Kim, C.D.;Hwang, I.H.;Kim, C.Y.;Jin, X.;Yang, C.G.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권9호
    • /
    • pp.1205-1215
    • /
    • 2012
  • This study was conducted to establish genetic criteria for phenotypic characteristics of Hanwoo cattle based on allele frequencies and genetic variance analysis using microsatellite markers. Analysis of the genetic diversity among 399 Hanwoo cattle classified according to nose pigmentation and coat color was carried out using 22 microsatellite markers. The results revealed that the INRA035 locus was associated with the highest $F_{is}$ (0.536). Given that the $F_{is}$ value for the Hanwoo INRA035 population ranged from 0.533 (white) to 1.000 (white spotted), this finding was consistent with the loci being fixed in Hanwoo cattle. Expected heterozygosities of the Hanwoo groups classified by coat colors and degree of nose pigmentation ranged from $0.689{\pm}0.023$ (Holstein) to $0.743{\pm}0.021$ (nose pigmentation level of d). Normal Hanwoo and animals with a mixed white coat showed the closest relationship because the lowest $D_A$ value was observed between these groups. However, a pair-wise differentiation test of $F_{st}$ showed no significant difference among the Hanwoo groups classified by coat color and degree of nose pigmentation (p<0.01). Moreover, results of the neighbor-joining tree based on a $D_A$ genetic distance matrix within 399 Hanwoo individuals and principal component analyses confirmed that different groups of cattle with mixed coat color and nose pigmentation formed other specific groups representing Hanwoo genetic and phenotypic characteristics. The results of this study support a relaxation of policies regulating bull selection or animal registration in an effort to minimize financial loss, and could provide basic information that can be used for establishing criteria to classify Hanwoo phenotypes.

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

웨이블릿 부대역의 에너지와 DC 값에 근거한 적응적 블록 복구 (Adaptive Block Recovery Based on Subband Energy and DC Value in Wavelet Domain)

  • 현승화;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권5호
    • /
    • pp.95-102
    • /
    • 2005
  • 본 논문은 잡음이 존재하는 전송 선로를 통한 영상 전송 시 발생하는 손실 블록에 대한 방향성 복구 방법을 제안한다. 손실된 블록은 웨이블릿 부대역의 에너지(EWS)와 DC값의 차이(DDC)에 의해 적응적으로 선택되어진 이웃 블록들을 이용한 선형 보간법에 의해 복구된다. 고정된 4-이웃 블록을 사용하여 복구하는 방법은 강한 에지영역에서 블록화된 블러링 효과를 발생시킨다. 본 논문의 방향성 복구 방법은 에지나 영상 내의 방향성 정보에 따라 적응적으로 변하는 이웃 블록을 사용하기 때문에 강한 에지영역에서 효과적이다. EWS만 이용하여 이웃블록을 선택하는 경우는 수직, 수평 에지에서는 좋은 성능을 보이지만 대각 에지에 대해서는 약점을 가지고 있다. DDC만을 이용하여 이웃블록을 선택하는 경우는 대각 에지에서는 좋은 성능을 보이지만 에지 프로파일에 따라 약점을 보인다. 따라서 EWS와 DDC 정보를 함께 이용하여 적응적으로 손실 블록을 복구할 이웃블록을 선택함으로써 두 가지방법의 약점을 서로 보완하여 더 좋은 성능을 보일 수 있다. 모의실험 결과 본 논문의 블록 복구 방법은 객관적 평가와 주관적 평가에서 모두 좋은 성능을 보였다.

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.

Genetic Variation and Polymorphism in Rainbow Trout, Oncorhynchus mykiss Analysed by Amplified Fragment Length Polymorphism

  • Yoon, Jong-Man;Yoo, Jae-Young;Park, Jae-Il
    • 한국양식학회지
    • /
    • 제17권1호
    • /
    • pp.69-80
    • /
    • 2004
  • The objective of the present study was to analyze genetic distances, variation and characteristics of individuals in rainbow trout, Oncorhynchus mykis using amplified fragment length polymorphism (AFLP) method as molecular genetic technique, to detect AFLP band patterns as genetic markers, and to compare the efficiency of agarosegel electrophoresis (AGE) and polyacrylamide gel electrophoresis (PAGE), respectively. Using 9 primer combinations, a total of 141 AFLP bands were produced, 108 bands (82.4%) of which were polymorphic in AGE. In PAGE, a total of 288 bands were detected, and 220 bands (76.4%) were polymorphic. The AFLP fingerprints of AGE were different from those of PAGE. Separation of the fragments with low molecular weight and genetic polymorphisms revealed a distinct pattern in the two gel systems. In the present study, the average bandsharing values of the individuals between two populations apart from the geographic sites in Kangwon-do ranged from 0.084 to 0.738 of AGE and PAGE. The bandsharing values between individuals No.9 and No. 10 showed the highest level within population, whereas the bandsharing values between individuals No.5 and No.7 showed the lowest level. As calculated by bandsharing analysis, an average of genetic difference (mean$\pm$SD) of individuals was approximately 0.590$\pm$0.125 in this population. In AGE, the single linkage dendrogram resulted from two primers (M11+H11 and M13+H11), indicating six genetic groupings composed of group 1 (No.9 and 10), group 2 (No. 1, 4, 5, 7, 10, 11, 16 and 17), group 3 (No. 2, 3, 6, 8, 12, 15 and 16), group 4 (No.9, 14 and 17), group 5 (No. 13, 19, 20 and 21) and group 6 (No. 23). In AGE, the genetic distances among individuals of between-population ranged from 0.108 to 0.392. In AGE, the shortest genetic distance (0.108) displaying significant molecular differences was between individuals No.9 and No. 10. Especially, the genetic distance between individuals No. 23 and the remnants among individuals within population was highest (0.392). Additionally, in the cluster analysis using the PAGE data, the single linkage dendrogram resulted from two primers (M12+H13 and M11+H13), indicating seven genetic groupings composed of group 1 (No. 15), group 2 (No. 14), group 3 (No. 11 and 12), group 4 (No.5, 6, 7, 8, 10 and 13), group 5 (No.1, 2, 3 and 4), group 6 (No.9) and group 7 (No. 16). By comparison with the individuals in PAGE, genetic distance between No. 10 and No. 7 showed the shortest value (0.071), also between No. 16 and No. 14 showed the highest value (0.242). As with the PAGE analysis, genetic differences were certainly apparent with 13 of 16 individuals showing greater than 80% AFLP-based similarity to their closest neighbor. The three individuals (No. 14, No. 15 and No. 16) of rainbow trout between two populations apart from the geographic sites in Kangwon-do formed distinct genetic distances as compared with other individuals. These results indicated that AFLP markers of this fish could be used as genetic information such as species identification, genetic relationship or analysis of genome structure, and selection aids for genetic improvement of economically important traits in fish species.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.