DOI QR코드

DOI QR Code

Determination of Genetic Diversity among Korean Hanwoo Cattle Based on Physical Characteristics

  • Choi, T.J. (Animal Genetics and Breeding Division, National Institute of Animal Science, Rural Development Administration) ;
  • Lee, S.S. (Animal Genetics and Breeding Division, National Institute of Animal Science, Rural Development Administration) ;
  • Yoon, D.H. (Department of Animal Science, Kyungpook National University) ;
  • Kang, H.S. (Department of Animal Science and Technology, Sunchon National University) ;
  • Kim, C.D. (Animal Genetics and Breeding Division, National Institute of Animal Science, Rural Development Administration) ;
  • Hwang, I.H. (Department of Animal Science, Chonbuk National Univ.) ;
  • Kim, C.Y. (Hanwoo Improvement Center, National Agricultural Cooperative Federation) ;
  • Jin, X. (College of Agriculture, Yanbian University) ;
  • Yang, C.G. (College of Agriculture, Yanbian University) ;
  • Seo, K.S. (Department of Animal Science and Technology, Sunchon National University)
  • Received : 2012.03.06
  • Accepted : 2012.04.30
  • Published : 2012.09.01

Abstract

This study was conducted to establish genetic criteria for phenotypic characteristics of Hanwoo cattle based on allele frequencies and genetic variance analysis using microsatellite markers. Analysis of the genetic diversity among 399 Hanwoo cattle classified according to nose pigmentation and coat color was carried out using 22 microsatellite markers. The results revealed that the INRA035 locus was associated with the highest $F_{is}$ (0.536). Given that the $F_{is}$ value for the Hanwoo INRA035 population ranged from 0.533 (white) to 1.000 (white spotted), this finding was consistent with the loci being fixed in Hanwoo cattle. Expected heterozygosities of the Hanwoo groups classified by coat colors and degree of nose pigmentation ranged from $0.689{\pm}0.023$ (Holstein) to $0.743{\pm}0.021$ (nose pigmentation level of d). Normal Hanwoo and animals with a mixed white coat showed the closest relationship because the lowest $D_A$ value was observed between these groups. However, a pair-wise differentiation test of $F_{st}$ showed no significant difference among the Hanwoo groups classified by coat color and degree of nose pigmentation (p<0.01). Moreover, results of the neighbor-joining tree based on a $D_A$ genetic distance matrix within 399 Hanwoo individuals and principal component analyses confirmed that different groups of cattle with mixed coat color and nose pigmentation formed other specific groups representing Hanwoo genetic and phenotypic characteristics. The results of this study support a relaxation of policies regulating bull selection or animal registration in an effort to minimize financial loss, and could provide basic information that can be used for establishing criteria to classify Hanwoo phenotypes.

Keywords

References

  1. Aasland, M., J. Klungland and S. Lien. 2000. Two polymorphisms in the bovine mast cell growth factor (MGF). Anim. Genet. 31:346. https://doi.org/10.1046/j.1365-2052.2000.00677.x
  2. Boom, R., C. J. A. Sol, M. M. M. Salimans, C. L. Jansen, P. M. E. Wertheim-Van Dillen and J. Van der Noordaa. 1990. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28:495-503.
  3. Canon, J., P. Alexandrino, I. Bessa, C. Carleos and Y. Carretero. 2001. Genetic diversity measures of local European beef cattle breeds for conservation purposes. Genet. Sel. Evol. 33:311-332. https://doi.org/10.1186/1297-9686-33-3-311
  4. Cítek, J., L. Panicke, V. Rehout and H. Prochazkova. 2006. Study of genetic distances between cattle breeds of Central Europe. Czech J. Anim. Sci. 51:429-436.
  5. Cockerham, C. C. and B. S. Weir. 1993. Estimation of gen flow from F-statistics. Evolution 47:855-863. https://doi.org/10.2307/2410189
  6. El Mousadik, A. and R. J. Petit. 1996. High level of genetic differentiation for allelic richness among population of the tree (Argania spinosa(L.) Skeels) endemic to Morocco. Theor. Appl. Genet. 92:832-839. https://doi.org/10.1007/BF00221895
  7. Felsenstein, J. 1982. How can we infer geography and history from gene frequencies? J. Theor. Biol. 96:9-20. https://doi.org/10.1016/0022-5193(82)90152-7
  8. Felsenstein, J. 2007. PHYLIP. Version. 3.67. Department of Genetics, University of Washington, Seattle, USA.
  9. Goudet, J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat. html
  10. Ibeagha-Awemu, E. M., O. C. Jann, C. Weimann and G. Erhardt. 2004. Genetic diversity, introgression and relationships among West/Central Africa cattle breed. Genet. Sel. Evol. 36:673-690. https://doi.org/10.1186/1297-9686-36-6-673
  11. Jang, Y. S., T. H. Kim, D. H. Yoon, E. W. Park, H. W. Lee, H. K. Lee and I. C. Cheong. 2002. A study on DNA polymorphism of the bovine c-KIT receptor gen. J. Anim. Sci. Technol. (Kor.) 44:653-660. https://doi.org/10.5187/JAST.2002.44.6.653
  12. Jordana, J., P. Alexandrino, A. Beija-Periera, I. Bessa, J. Canon and Y. Carretero. 2003. Genetic structure of eighteen local south european beef cattle breeds on microsatellite data. Anim. Genet. 33:201-204.
  13. Kim, K. S., J. H. Eum and C. B. Choi. 2001. Genetic diversity of Korean cattle using microsatellite analysis. J. Anim. Sci. Technol. (Kor.) 43:599-608.
  14. Korea Animal Improvement Association. 1997. Standard of judging Hanwoo (public notice 97-7).
  15. Laval, G., M. SanCristobal and C. Chevalet. 2002. Measuring genetic distances between breeds: use of some distances in various shortterm evolution models. Genet. Sel. Evol. 34:481-507. https://doi.org/10.1186/1297-9686-34-4-481
  16. Lee, S. S., B. S. Yang, Y. H. Yang, S. Y. Kang, S. B. Ko, J. K. Jung, W. Y. Oh and S. J. Oh. 2001. Analysis of melanocortin receptor 1 (MC1R) genotype in Korean brindle cattle and Korean cattle with. J. Anim. Sci. Technol. (Kor.) 44:23-30. https://doi.org/10.5187/JAST.2002.44.1.023
  17. Leipold, H. W., K. Huston and K. N. Gelatt. Complete albinism in a Guernsey calf. J. Hered. 59:218-220.
  18. Liron, J. P., P. Peral-García and G. Giovambattista. 2006. Genetic characterization of Argentine and Bolivian Creole cattle breeds assessed through microsatellites. J. Hered. 97:331-339. https://doi.org/10.1093/jhered/esl003
  19. Loftus, R. T., O. Ertugrul, A. H. Harba, M. A. A. El-Barodys, D. E. MacHugh, S. D. E. Park and D. G. Bradley. 1999. A microsatellite survey of cattle from a centre of origin: the Near East. Mol. Ecol. 8:2015-2022. https://doi.org/10.1046/j.1365-294x.1999.00805.x
  20. MacHugh, D. E., R. T. Loftus, P. Cunningham and D. G. Bradley. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Anim. Genet. 29:333-340. https://doi.org/10.1046/j.1365-2052.1998.295330.x
  21. Martín-Burriel, I., E. García-Muro and P. Zaragoza. 1999. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30:177-182. https://doi.org/10.1046/j.1365-2052.1999.00437.x
  22. Martín-Burriel, I., C. Rodellar, J. A. Lenstra, A. Sanz, C. Cons, R. Osta, M. Reta, S. D. Argüello, A. Sanz and P. Zaragoza. 2007. Genetic diversity and relationships of endangered Spanish cattle breeds. J. Hered. 98:697-700.
  23. Mateus, J. C., M. C. T. Penedo, V. C. Alves, M. Ramos and T. Rangel-Figueiredo. 2004. Genetic diversity and differentiation in Portuguese cattle breeds using microsatellites. Anim. Genet. 35:106-113. https://doi.org/10.1111/j.1365-2052.2004.01089.x
  24. Minch, E. 1998. MICROSAT. Version 1.5b. University of Stanford, Stanford, CA, USA.
  25. Moazami-Goudarzi, K., D. Laloe, J. P. Furet and F. Grosclaude. 1997. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Anim. Genet. 28:338-345. https://doi.org/10.1111/j.1365-2052.1997.00176.x
  26. Mukesh, M., M. Sodhi, S. Bhatia and B. P. Mishra. 2004. Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellite loci. J. Anim. Breed. Genet. 121:416-424. https://doi.org/10.1111/j.1439-0388.2004.00468.x
  27. Nei, M. 1983. Accuracy of estimated phylogenetics trees from molecular data. J. Mol. Evol. 19:153-170. https://doi.org/10.1007/BF02300753
  28. Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. New York, USA.
  29. Olsen, T. 1981. The genetic basis for piebald patterns in cattle. J. Hered. 72:113-116.
  30. Olson, T. A. 1999. Genetics of color variation. In: The Genetics of Cattle (Ed. R. Fries and A. Ruvinsky). Wallingford, UK: CABI, p. 33.
  31. Ota, T. 1993. DISPAN. Pennsylvania State University, PA. USA.
  32. Pandey, A. K., R. Sharma, Y. Singh, B. B. Prakash and S. P. S. Ahlawat. 2006. Genetic diversity studies of Kherigarh cattle based on microsatellite markers. J. Genet. 85:117-122. https://doi.org/10.1007/BF02729017
  33. Park, S. D. E. 2001. Trypanotolerane in west African cattle and the population genetic effects of selection. Ph. D. thesis. University of Dublin.
  34. Pawson, T. and A. Bernstin. 1990. Receptor tyrosine kinase: genetic evidence for their role in Drosphila and mouse development. Trends Genet. 6:350-356. https://doi.org/10.1016/0168-9525(90)90276-C
  35. Philippe, H. and M. Blanchette. 2007. Overview of the first phylogenomics conference. BMC Evol Biol. 7(supple 1):S1.
  36. Rao, C., D. Foemzler, S. K. Loftus, S. Liu, J. D. McPherson, K. A. Jungers, S. S. Apte, W. J. Pavan and D. R. Beier. 2003. A defect in a novel ADAMTS family member is the cause of the belted white-spotting mutation. Development 130:4665. https://doi.org/10.1242/dev.00668
  37. Reinsch, N., H. Thomsen, N. Xu, M. Brink, C. Looft, E. Kalm, G. Brockmann, S. Grupe, C. Kühn, M. Schwenin, B. Leyhe, S. Heindleder, G. Erhardt, I. Medfugrac, I. Russ, M. Förster, R. Reents and G. Averdunk. 1999. A QTL for the degree of spotting in cattle shows synteny with the KIT locus on chromosome 6. J. Hered. 90:629-634. https://doi.org/10.1093/jhered/90.6.629
  38. Roh, S. H. 2008. Studies on selection efficiency using ultrasound measurement trait in Hanwoo (Korean native cattle). Division of Animal Sciences, Gyeongsang Natl. univ. Ph. D. thesis.
  39. Rosenberg, N. A., T. Burke, K. Elo, M. W. Feldman, P. J. Freidlin, M. A. M. Groenen, J. Hillel, A. Mäki-Tanila, M. Tixier-Boichard, A. Vignal, K. Wimmers and S. Weigend. 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics 159:699-713.
  40. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstrucing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  41. Schmid, M., N. Saitbekova, C. Gaillard and G. Dolf. 1999. Genetic diversity in Swiss cattle breeds. J. Anim. Breed. Genet. 116:1-8. https://doi.org/10.1111/j.1439-0388.1999.00165.x
  42. Schmutz, S. M., T. G. Berryere and C. C. Daniel. 2004. A form of albinism in cattle is caused by a tyrosinase frame shift mutation. Mamm. Genome 15:62-67. https://doi.org/10.1007/s00335-002-2249-5
  43. Seitz, J. J., S. M. Schmutz, T. D. Thue, F. C. Buchanan. 1999. A missense mutation in the bovine MGF gene is associated with the roan phenotype in Belgian Blue and Shorthorn cattle. Mamm. Genome 10:710-712. https://doi.org/10.1007/s003359901076
  44. Seo, K., T. R. Mohanty, T. Choi and Inho Hwang. 2007. Biology of epidermal and hair pigmentation in cattle: a mini-review. Veterinary Dermatol. 18:392-400. https://doi.org/10.1111/j.1365-3164.2007.00634.x
  45. Sodhi, M., M. Mukesh, B. Prakash, S. P. S. Ahlawat and R. C. Sobti. 2006. Microsatellite DNA typing for assessment of genetic variability in Tharparkar breed of Indian Zebu (Bos indicus) cattle, a major breed of Rajasthan. J. Genet. 85:165-170. https://doi.org/10.1007/BF02935326
  46. Takezaki, N. and M. Nei. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389-399.
  47. Vijh, R. K., M. S. Tantia, B. Mishara and S. T. Bharani Kumar. 2008. Genetic relationship and diversity analysis of Indian water buffalo (Bubalus bubalis). J. Anim. Sci. 86:1495-1502. https://doi.org/10.2527/jas.2007-0321
  48. Weir, B. S. 1990. Genetic data analysis. Sunderland, Massachusetts. Canada.
  49. Weir, B. S. 1996. Genetic data analysis II: methods for discrete population genetic data. Sunderland, Massachusetts. Canada.
  50. Yoon, D. H. 2002. Molecular genetic diversity and development of genetic markers in association with meat quality for Hanwoo (Korean cattle). Dept. of Animal Sciences, Korea univ. Ph. D. thesis.
  51. Yoon, D. H., E. W. Park, S. H. Lee, H. K. Lee, S. J. Oh, I. C. Cheong and K. C. Hong. 2005. Assessment of genetic diversity and relationships between Korean cattle and other cattle breeds by microsatellite loci. J. Anim. Sci. Technol. (Kor.) 47:341-354. https://doi.org/10.5187/JAST.2005.47.3.341
  52. Zhang, G. X., Z. G. Wang, W. S. Chen, C. X. Wu, X. Han, H. Chang, L. S. Zan, R. L. Li, J. H. Wang, W. T. Song, G. F. Xu, H. J. Yang and Y. F. Luo. 2007. Genetic diversity and population structure of indigenous yellow cattle breeds of China using 30 microsatellite markers. Anim. Genet. 38:550-559. https://doi.org/10.1111/j.1365-2052.2007.01644.x

Cited by

  1. Assessment of Genetic Diversity, Relationships and Structure among Korean Native Cattle Breeds Using Microsatellite Markers vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14435
  2. Development of Microsatellite Markers for Discriminating Native Korean and Imported Cattle Breeds vol.27, pp.4, 2012, https://doi.org/10.5352/jls.2017.27.4.464
  3. Origin-related study of genetic diversity and heteroplasmy of Mongolian sheep (Ovis aries) using mitochondrial DNA vol.35, pp.2, 2012, https://doi.org/10.12750/jarb.35.2.198