• Title/Summary/Keyword: nearly Zero Energy Building

Search Result 4, Processing Time 0.02 seconds

Development of Initial Design Stage Guidelines for nearly Zero Energy Offices : A Central-Climate Zone of Korea Case Study

  • Kang, Hae Jin;Yi, Won
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.67-74
    • /
    • 2015
  • This study aimed to develop a design manual to be used during the initial stage of the nearly Zero Energy Building (nZEB) design process. Recently, with the increased demand for nZEBs, there are many architects and architectural firms who are becoming interested in nZEB design. However, since the nZEB design process requires a different approach to the conventional building design process, architects have difficulties with application of the nZEB design process in their projects. Therefore, a design manual which can be used in the nZEB design process was developed in this study. Based on an intensive literature review, energy-saving strategies and their performance levels, which affect heating and cooling energy consumptions were established for a reference building. To analyze the sensitivity of each energy strategy to the overall performance, computer simulations using EnergyPlus were performed. At the same time, an Analysis of Variance assessment was conducted to estimate the relative importance of each energy factor. The energy sensitivity and priority of the energy factors was developed into a set of design guidelines.

Retrofit of a UK residential property to achieve nearly zero energy building standard

  • Salem, Radwa;Bahadori-Jahromi, Ali;Mylona, Anastasia;Godfrey, Paulina;Cook, Darren
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.13-28
    • /
    • 2018
  • It is currently agreed upon that one of the major challenges in the construction industry is the energy efficiency of existing buildings. The World Meteorological Organisation (WMO) and United Nations (UN) have reported that the concentration of global atmospheric carbon dioxide has increased by an average of 50%, a record speed, from 2015 to 2016. The housing sector contributes to 45% of the UK's carbon emissions. To help tackle some of those issues the recast Energy Performance Building Directive (EBPD) has introduced Nearly Zero Energy Buildings (NZEBs) in the coming years (including buildings that will undergo refurbishment/renovations). This paper will explore the retrofitting of a UK residential dwelling using Thermal Analysis Simulation (TAS, EDSL) software by focusing on building fabric improvements and usage of on-site renewables. The CIBSE Test Reference Year (TRY) weather data has been selected to examine the performance of the building under current and future climate projections. The proposed design variables were finally implemented in the building altogether on TAS. The simulation results showed a reduction in the building's annual energy consumption of $122.64kWh/m^2$ (90.24%). The greatest savings after this were achieved for the annual reduction in carbon emissions and avoided emissions, which were 84.59% and $816.47kg/CO_2$, respectively.

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Domestic Greenhouse Gas Reduction Policy (국내 온실가스 감축 정책)

  • Bae, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2011
  • For reducing greenhouse gas emissions, the short-term strategy is of existing energy-efficient appliances to facilitate the spread of energy efficiency improvements to improve energy efficiency, energy saving projects that will include investments to enable. R&D is at the core of the long-term strategy. To reduce energy demand, the equipments and processes improved energy efficiency should be developed. In terms of energy supply, the policies for greenhouse gas reduction is to replace fossil fuels by expanding the supply of renewable energy such as solar, wind, geothermal, biomass and nuclear power as nearly zero-emission of greenhouse gas. In terms of energy consumption, measures to reduce greenhouse gas emissions is in line with the policy for efficiency improvement. The buildings & work-site of high-energy consumption in the building & Industry sectors, should implement a policy to strengthening the voluntary agreement on energy-saving facilities and expand to invest in energy saving facilities.