• Title/Summary/Keyword: near-infrared spectroscopy (NIRS)

Search Result 220, Processing Time 0.026 seconds

Determination of Protein and Oil Contents in Soybean Seed by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.106-111
    • /
    • 2001
  • The applicability of near infrared reflectance spectroscopy(NIRS) was tested to determine the protein and oil contents in ground soybean [Glycine max (L.) Merr.] seeds. A total of 189 soybean calibration samples and 103 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of protein, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing and 1 point second smoothing) math treatment condition with SNV-D (Standard Normal Variate and Detrend) scatter correction method and entire spectrum by using MPLS (Modified Partial Least Squares) regression. In the case of oil, the best equation was obtained at 1, 4, 4, 1 condition with SNV-D scatter correction method and near infrared (1100-2500nm) region by using MPLS regression. Validation of these NIRS equations showed very low bias (protein:-0.016%, oil : -0.011 %) and standard error of prediction (SEP, protein: 0.437%, oil: 0.377%) and very high coefficient of determination ($R^2$, protein: 0.985, oil : 0.965). Therefore, these NIRS equation seems reliable for determining the protein and oil content, and NIRS method could be used as a mass screening method of soybean seed.

  • PDF

Identification of Apple Cultivars using Near-infrared Spectroscopy

  • Choi, Sun-Tay;Chung, Dae-Sung;Lim, Chai-Il;Chang, Kyu-Seob
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1624-1624
    • /
    • 2001
  • Near-infrared spectroscopy (NIRS) was used to investigate the possibility for application in identification of apple cultivars. Three apple cultivars ‘Kamhong, Hwahong, and Fuji’ produced in Korea were scanned over the range of 1100-2500nm using NIRS (Infra Alzer 500). Two types of samples were used for scanning; one was apple with skin and the other was apple without skin. For cultivar identification, the NIR absorbance spectrums were analyzed by qualitative calibration in “Sesame” analysis program, and the various influence properties such as sugar contents, acidity, color, firmness, and micro-structure were compared in scanned samples. The ‘Kamhong’ cultivar could be identified from ‘Hwahong’ and ‘Fuji’ cultivars using the cluster model analysis. The test samples in calibration between ‘Kamhong’ and ‘Fuji’ cultivars could be completely identified. The test samples in calibration between ‘Kamhong’ and ‘Hwahong’ cultivars could be identified most of all. But, ‘Hwahong’ and ‘Fuji’ cultivars could not be quite classified each other. The apple skin influenced the identification process of apple cultivars. The samples without skin were more difficult to classify in calibration than the samples with skin. The physicochemical properties of apple cultivars showed like the result of identification in calibration using NIRS. Some physicochemical properties of ‘Kamhong’ cultivar were different from those of the other cultivars. Those of ‘Hwahong’ and ‘Fuji’ cultivars showed. similar to each other. The sucrose contents of ‘Kamhong’ cultivar were higher and the fructose contents and firmness of skin and flesh were lower than those of the others. The hypodermis layer of skin in ‘Kamhong’ cultivar was thinner than those of the others. In this studies, the identification of all apple cultivars by NIRS was not quite accurate because of the physicochemical properties which were different in the same cultivar, and inconsistent patterns by culivars in some properties. To solve these problems in NIRS application for apple cultivar identification, further study should be focused on the use of peculiar properties among the apple cultivars.

  • PDF

Clinical Applications of Functional Near-Infrared Spectroscopy in Children and Adolescents with Psychiatric Disorders

  • Lee, Yeon Jung;Kim, Minjae;Kim, Ji-Sun;Lee, Yun Sung;Shin, Jeong Eun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • The purpose of this review is to examine the clinical use of functional near-infrared spectroscopy (fNIRS) in children and adolescents with psychiatric disorders. Many studies have been conducted using objective evaluation tools for psychiatric evaluation, such as predicting psychiatric symptoms and treatment responses. Compared to other tools, fNIRS has the advantage of being a noninvasive, inexpensive, and portable method and can be used with patients in the awake state. This study mainly focused on its use in patients with attention-deficit/hyperactivity disorder and autism spectrum disorder. We hope that research involving fNIRS will be actively conducted in various diseases in the future.

Determination of Total Volatile Bases of Tobacco Using Near Infrared Spectroscopy (근외적 분광분석법을 이용한 담배 중 전휘발성염기 분석)

  • Kim Yong-Ok;Jang Gi-Chul;Lee Chul-Hee;Chung Han-Joo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.207-211
    • /
    • 2005
  • This study was carried out to develop calibration equation of total volatile bases of tobacco leaf using near infrared spectroscopy(NIRS). Burley, imported flue-cured and oriental leaf tobacco samples were collected in 2005 crop year. Calibration equation was developed by modified partial least square method. The standard error of calibration and $R^2$ between traditional analytical method and NIRS analytical method were $0.038\%$, 0.983 for burley and $0.027\%$, 0.986 for imported flue-cured and oriental leaf, respectively. The standard error of performance and $R^2$ between traditional analytical method and NIRS analytical method were $0.048\%$, 0.940 for burley and $0.024\%$, 0.986 for imported flue-cured and oriental leaf, respectively. From these results, the NIRS analytical method seems to be applicable in analyzing total volatile bases of tobacco.

Hemodynamic Responses of Rat Brain Measured by Near-infrared Spectroscopy During Various Whisker Stimulations

  • Lee, Seung-Duk;Koh, Dalk-Won;Kwon, Ki-Woon;Lee, Hyun-Joo;Lang, Yiran;Shin, Hyung-Cheul;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.166-170
    • /
    • 2009
  • NIRS (Near-infrared spectroscopy) is a relatively, new, non-invasive, and non-ionizing method of measuring hemodynamic responses in thick biological tissues such as the cerebral cortex. In this study, we measured the hemodynamic responses of the rat barrel cortex to whisker stimulation by using a frequency-domain NIRS system. We designed multiple optical probes comprising multi-mode optical fibers and manipulating arms, both of which can be easily applied to small animals. Various electrical stimulations were applied to rat whiskers at different voltage levels and stimulation frequencies. Our results show that the hemodynamic responses are highly dependent on the stimulation voltage level, and not so much on stimulation frequency. This paper suggests that NIRS technology is highly suitable for the study of small animal brains.

Determination of four Nutrients in Tomato with Near Infrared Spectrometry

  • Liu, Ling;Jin, Tongming
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1514-1514
    • /
    • 2001
  • In this paper a fast non-destructive analytical method to measure various nutrients in the intact tomato---Near infrared Spectrometry NIRs was introduced Using this method the content of some organic acid, vitamin C, reductive sugar, and solid soluble were determined simultaneously. Screen out four wavelengths at 916nm, 1000nm, 1004nm and 832nm to present optimum four optical terms of d$^2$ log(1/R) with second derivative spectra treating data scanned under these wavelengths. The multiple correlation coefficients between these values and those obtained on chemical analysis were 0.983, 0.990, 0.987, and 0.994, respectively, and the standard errors of prediction (SEP) were 0.007, 0.440, 0.037, and 0.057, respectively. These results indicate that NIRs is comparable to chemical methods in both accuracy and precision and is reliable method for determination of nutrients in intact tomato.

  • PDF

Classficiation of Bupleuri Radix according to Geographical Origins using Near Infrared Spectroscopy (NIRS) Combined with Supervised Pattern Recognition

  • Lee, Dong Young;Kang, Kyo Bin;Kim, Jina;Kim, Hyo Jin;Sung, Sang Hyun
    • Natural Product Sciences
    • /
    • v.24 no.3
    • /
    • pp.164-170
    • /
    • 2018
  • Rapid geographical classification of Bupleuri Radix is important in quality control. In this study, near infrared spectroscopy (NIRS) combined with supervised pattern recognition was attempted to classify Bupleuri Radix according to geographical origins. Three supervised pattern recognitions methods, partial least square discriminant analysis (PLS-DA), quadratic discriminant analysis (QDA) and radial basis function support vector machine (RBF-SVM), were performed to establish the classification models. The QDA and RBF-SVM models were performed based on principal component analysis (PCA). The number of principal components (PCs) was optimized by cross-validation in the model. The results showed that the performance of the QDA model is the optimum among the three models. The optimized QDA model was obtained when 7 PCs were used; the classification rates of the QDA model in the training and test sets are 97.8% and 95.2% respectively. The overall results showed that NIRS combined with supervised pattern recognition could be applied to classify Bupleuri Radix according to geographical origin.

Discrimination between Artemisia princeps and Artemisia capillaris Based on Near Infrared Spectroscopy Combined Multivariate Analysis

  • Lee, Dong-Young;Jeon, Min-Ji;Suh, Young-Bae;Kim, Seung-Hyun;Kim, Young-Choong;Sung, Sang-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.377-380
    • /
    • 2011
  • The Artemisia princeps (Compositae) has been used in traditional Korean medicine for the treatment of microbial infections and inflammatory diseases. Since A. princeps is generally difficult to be discriminated from A. capillaris, A. caplillaris has been misused in place of A. princeps. To solve this problem, a rapid and nondestructive method for discrimination of A. princeps and A. capillaris samples was developed using near infrared spectroscopy (NIRS) in the present study. A principal component analysis (PCA) and a partial least squares discrimination analysis (PLS-DA) were performed to discriminate two species. As a result, with the use of PLS-DA, A. princeps and A. capillaris were clustered according to their genus. These outcomes indicated that the NIRS could be useful for the discrimination between Artemisia princeps and Artemisia capillaris.

Preliminary Study of Gender-Based Brain Lateralization Using Multi-Channel Near-Infrared Spectroscopy

  • V, Zephaniah Phillips;Kim, Evgenii;Kim, Jae Gwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.284-296
    • /
    • 2015
  • It has been thought that males tend to use their brain hemispheres more laterally than females. However, recent fMRI studies have shown that there may be no difference in brain lateralization between genders. Functional near-infrared spectroscopy (fNIRS) presents a unique opportunity to acquire real time measurements of blood oxygenation changes to observe neural activity specific to the brain's left and right hemispheres. Using an in-house built multichannel fNIRS system, brain lateralization was observed from seven males and four females according to specially designed tasks for left and right hemisphere activation. The Pearson correlation coefficient and a modified Lateralization Index metric for continuous wave fNIRS systems were calculated to quantify brain lateralization. The preliminary results point to no significant difference in lateral hemodynamic changes between the genders. However, the correlation of symmetrical channel pairs decreased as the experiments progressed. To further develop this study, the subject's performance and the removal of global interference must be implemented for an improved study of brain lateralization.

Application of near-infrared spectroscopy for hay evaluation at different degrees of sample preparation

  • Eun Chan Jeong;Kun Jun Han;Farhad Ahmadi;Yan Fen Li;Li Li Wang;Young Sang Yu;Jong Geun Kim
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1196-1203
    • /
    • 2024
  • Objective: A study was conducted to quantify the performance differences of the near-infrared spectroscopy (NIRS) calibration models developed with different degrees of hay sample preparations. Methods: A total of 227 imported alfalfa (Medicago sativa L.) and another 360 imported timothy (Phleum pratense L.) hay samples were used to develop calibration models for nutrient value parameters such as moisture, neutral detergent fiber, acid detergent fiber, crude protein, and in vitro dry matter digestibility. Spectral data of hay samples prepared by milling into 1-mm particle size or unground were separately regressed against the wet chemistry results of the abovementioned parameters. Results: The performance of the developed NIRS calibration models was evaluated based on R2, standard error, and ratio percentage deviation (RPD). The models developed with ground hay were more robust and accurate than those with unground hay based on calibration model performance indexes such as R2 (coefficient of determination), standard error, and RPD. Although the R2 of calibration models was mainly greater than 0.90 across the feed value indexes, the R2 of cross-validations was much lower. The R2 of cross-validation varies depending on feed value indexes, which ranged from 0.61 to 0.81 in alfalfa, and from 0.62 to 0.95 in timothy. Estimation of feed values in imported hay can be achievable by the calibrated NIRS. However, the NIRS calibration models must be improved by including a broader range of imported hay samples in the modeling. Conclusion: Although the analysis accuracy of NIRS was substantially higher when calibration models were developed with ground samples, less sample preparation will be more advantageous for achieving rapid delivery of hay sample analysis results. Therefore, further research warrants investigating the level of sample preparations compromising analysis accuracy by NIRS.