Browse > Article
http://dx.doi.org/10.3807/JOSK.2009.13.1.166

Hemodynamic Responses of Rat Brain Measured by Near-infrared Spectroscopy During Various Whisker Stimulations  

Lee, Seung-Duk (Department of Biomedical Engineering, Yonsei University)
Koh, Dalk-Won (Department of Biomedical Engineering, Yonsei University)
Kwon, Ki-Woon (Department of Biomedical Engineering, Yonsei University)
Lee, Hyun-Joo (Department of Physiology, Hallym University)
Lang, Yiran (Department of Physiology, Hallym University)
Shin, Hyung-Cheul (Department of Physiology, Hallym University)
Kim, Beop-Min (Department of Biomedical Engineering, Korea University)
Publication Information
Journal of the Optical Society of Korea / v.13, no.1, 2009 , pp. 166-170 More about this Journal
Abstract
NIRS (Near-infrared spectroscopy) is a relatively, new, non-invasive, and non-ionizing method of measuring hemodynamic responses in thick biological tissues such as the cerebral cortex. In this study, we measured the hemodynamic responses of the rat barrel cortex to whisker stimulation by using a frequency-domain NIRS system. We designed multiple optical probes comprising multi-mode optical fibers and manipulating arms, both of which can be easily applied to small animals. Various electrical stimulations were applied to rat whiskers at different voltage levels and stimulation frequencies. Our results show that the hemodynamic responses are highly dependent on the stimulation voltage level, and not so much on stimulation frequency. This paper suggests that NIRS technology is highly suitable for the study of small animal brains.
Keywords
Near-infrared spectroscopy (NIRS); Hemodynamic responses; Neuroimaging; Neurovascular coupling; Whisker stimulation;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 M. A. Franceschini, I. Nissila, W. Wu, S. G. Diamond, G. Bonmassar, and D. A. Boas, Coupling between somatosensory evoked potentials and hemodynamic response in the rat,' Neuroimage 41, 189-203 (2008)   DOI   ScienceOn
2 N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, 'Neurophysiological investigation of the basis of the fMRI signal,' Nature 412, 150-157 (2001)   DOI   ScienceOn
3 T. Matsuura and I. Kanno, 'Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats,' Neurosci. Res. 40, 281-290 (2001)   DOI   ScienceOn
4 C. I. Moore, S. B. Nelson, and M. Sur, 'Dynamics of neuronal processing in rat somatosensory cortex,' Trends. Neurosci. 22, 513-520 (1999)   DOI   ScienceOn
5 D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, 'Estimation of optical pathlength through tissue from direct time of flight measurement,' Phys. Med. Biol. 33, 1433-1442 (1988)   DOI   ScienceOn
6 S. Fantini, 'A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin,' Phys. Med. Biol. 47, N249-N257 (2002)   DOI   ScienceOn
7 A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher., 'Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,' J. Biomed. Opt. 9, 1046-1062 (2004)   DOI   ScienceOn
8 J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, 'Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,' J. Cereb. Blood Flow Metab. 23, 911-924 (2003)   DOI   ScienceOn
9 M. Jones, N. Hewson-Stoate, J. Martindale, P. Redgrave, and J. Mayhew, 'Nonlinear coupling of neural activity and CBF in rodent barrel cortex,' Neuroimage 22, 956-965 (2004)   DOI   ScienceOn
10 A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, 'Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,' Neuron 39, 353-359 (2003)   DOI   ScienceOn
11 D. G. Nair, 'About being BOLD,' Brain Res. Rev. 50, 229-243 (2005)   DOI   ScienceOn
12 N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, 'Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,' Neuroimage 37, S27-S36 (2007)   DOI   ScienceOn
13 J. Skoch, A. Dunn, B. T. Hyman, and B. J. Bacskai, 'Development of an optical approach for noninvasive imaging of Alzheimer's disease pathology,' J. Biomed. Opt. 10, 11007 (2005)   DOI   ScienceOn
14 J. A. Helpern, S. P. Lee, M. F. Falangola, V. V. Dyakin, A. Bogart, B. Ardekani, K. Duff, C. Branch, T. Wisniewski, M. J. de Leon, O. Wolf, J. O'Shea, and R. A. Nixon, 'MRI assessment of neuropathology in a transgenic mouse model of Alzheimer's disease,' Magn. Reson. Med. 51, 794-798 (2004)   DOI   ScienceOn
15 A. J. Blood, S. M. Narayan, and A. W. Toga, 'Stimulus parameters influence characteristics of optical intrinsic signal responses in somatosensory cortex,' J. Cereb. Blood Flow Metab. 15, 1109-1121 (1995)   DOI   ScienceOn
16 A. M. Siegel, J. P. Culver, J. B. Mandeville, and D. A. Boas, 'Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation,' Phys. Med. Biol. 48, 1391-1403 (2003)   DOI   ScienceOn
17 A. Norup Nielsen and M. Lauritzen, 'Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex,' J. Physiol. 533, 773-785 (2001)   DOI
18 M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, 'Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,' Neuroimage 16, 704-712 (2002)   DOI   ScienceOn
19 J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, 'Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex,' Neuroimage 12, 664-675 (2000)   DOI   ScienceOn
20 T. Misgeld and M. Kerschensteiner, 'In vivo imaging of the diseased nervous system,' Nat. Rev. Neurosci. 7, 449-63 (2006)   DOI   ScienceOn
21 F. F. Jobsis, 'Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,' Science 198, 1264-1267 (1977)   DOI