• 제목/요약/키워드: near-infrared light

Search Result 256, Processing Time 0.029 seconds

Monitoring of Environmental Arsenic by Cultures of the Photosynthetic Bacterial Sensor Illuminated with a Near-Infrared Light Emitting Diode Array

  • Maeda, Isamu;Sakurai, Hirokazu;Yoshida, Kazuyuki;Siddiki, Mohammad Shohel Rana;Shimizu, Tokuo;Fukami, Motohiro;Ueda, Shunsaku
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권12호
    • /
    • pp.1306-1311
    • /
    • 2011
  • Recombinant Rhodopseudomonas palustris, harboring the carotenoid-metabolizing gene crtI (CrtIBS), and whose color changes from greenish yellow to red in response to inorganic As(III), was cultured in transparent microplate wells illuminated with a light emitting diode (LED) array. The cells were seen to grow better under near-infrared light, when compared with cells illuminated with blue or green LEDs. The absorbance ratio of 525 to 425 nm after cultivation for 24 h, which reflects red carotenoid accumulation, increased with an increase in As(III) concentrations. The detection limit of cultures illuminated with near-infrared LED was 5 ${\mu}g$/l, which was equivalent to that of cultures in test tubes illuminated with an incandescent lamp. A near-infrared LED array, in combination with a microplate, enabled the simultaneous handling of multiple cultures, including CrtIBS and a control strain, for normalization by the illumination of those with equal photon flux densities. Thus, the introduction of a near-infrared LED array to the assay is advantageous for the monitoring of arsenic in natural water samples that may contain a number of unknown factors and, therefore, need normalization of the reporter event.

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

IR영역에서의 위장염색을 위한 칼라 매칭 알고리즘 연구 (The Color Matching Algorithm in Near Infrared Range for Military Camouflage)

  • 송경헌;육종일;하헌승;이태상;유영은;이시우
    • 한국염색가공학회지
    • /
    • 제17권4호
    • /
    • pp.7-14
    • /
    • 2005
  • The purpose of this study was to develop the color matching program with the excellent camouflage capacity in the near infrared range($\~$1100nm) including the visible light range for cotton fabrics. It was measured IR spectral reflectance in the range of $380\~1,100nm$ after dyed with vat dyes, and we made database for reflectance with various concentration on vat dyes which have a low reflectance value in the infrared range. The color matching algorithm that could be simulated in both the human visible light and the near infrared range was constructed by numerical analysis method using the database. In this study we also developed the dyeing conditions and dyeing process through the continuous-dyeing experiment with the vat dyes for cotton fabrics.

근적외선 영상의 특성을 활용한 안개 제거 알고리즘 (Image Dehazing Algorithm Using Near-infrared Image Characteristics)

  • 유제택;나성웅;이성민;정승원
    • 전자공학회논문지
    • /
    • 제52권11호
    • /
    • pp.115-123
    • /
    • 2015
  • 적외선 영상은 외광의 밝기에 영향을 적게 받아서 원격 탐사 및 영상 보안 등의 응용에서 활발하게 활용되고 있다. 그러나 안개와 같은 기상 악화상황으로 인하여 해당 적외선 영상의 화질이 크게 저하되는 경우가 빈번하게 발생한다. 칼라 영상의 안개제거 기술이 다양하게 연구되어온 반면 적외선 영상의 안개제거 기술은 상대적으로 관심을 받지 못하고 있다. 본 논문에서는 근적외선 대역 영상에 대하여 적외선 영상의 통계학적 특징을 이용한 안개 제거 알고리즘을 제안한다. 기계학습 기법을 활용하여 전달량을 보정하고 다중 후처리 기법을 적용하여 정확한 전달량을 구하였다. 제안 기술을 이용하여 복원한 적외선 영상이 기존 칼라영상에 기반한 알고리즘을 적외선 영상에 적용하여 얻은 결과보다 화질이 좋다는 것을 확인하였다.

근적외선 반사 박막 특성 연구 (Study on characteristics of thin films for reflection of near infrared light)

  • 정연길;박현식
    • 한국산학기술학회논문지
    • /
    • 제16권6호
    • /
    • pp.4121-4124
    • /
    • 2015
  • 에너지 절감 유리창에서는 근적외선 차단 기능이 요구되고 있다. 본 연구에서는 근적외선 반사를 위한 광학 박막의 설계, 제작 및 광학적 특성이 연구 되었다. 광학 박막은 저굴절률막과 고굴절률막의 적층 박막 구조로 설계하였다. 설계구조에 따라 RF 스퍼터링 방법을 이용한 $SiO_2$$TiO_2$ 박막의 증착 실험이 수행되었고 파워에 따른 증착 조건 파라미터에 따라서 제작된 스퍼터링 박막의 특성이 분광타원기, 원자현미경, 분광기로 분석되었다. 적층박막 구조의 설계는 $SiO_2$$TiO_2$의 고굴절률 박막/저굴절률 박막/고굴절률 박막의 적층 구조로서 근적외선 차단 다층막이 설계되었고 시뮬레이션 되었다. 시뮬레이션 결과 파장대역 930nm에서 1682nm의 범위에서 반사율30%이상이 관찰되었다. 시뮬레이션 결과를 토대로 제작된 삼층 구조의 박막은 파장 대역이 930nm에서 1525nm범위 대역에서 반값 전폭의 반사율 33%이상을 구현할 수 있었다.

Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green

  • Cho, Steve S.;Teng, Clare W.;Ravin, Emma De;Singh, Yash B.;Lee, John Y.K.
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권4호
    • /
    • pp.572-581
    • /
    • 2022
  • Objective : Compared to microscopes, exoscopes have advantages in field-depth, ergonomics, and educational value. Exoscopes are especially well-poised for adaptation into fluorescence-guided surgery (FGS) due to their excitation source, light path, and image processing capabilities. We evaluated the feasibility of near-infrared FGS using a 3-dimensional (3D), 4 K exoscope with near-infrared fluorescence imaging capability. We then compared it to the most sensitive, commercially-available near-infrared exoscope system (3D and 960 p). In-vitro and intraoperative comparisons were performed. Methods : Serial dilutions of indocyanine-green (1-2000 ㎍/mL) were imaged with the 3D, 4 K Olympus Orbeye (system 1) and the 3D, 960 p VisionSense Iridium (system 2). Near-infrared sensitivity was calculated using signal-to-background ratios (SBRs). In addition, three patients with brain tumors were administered indocyanine-green and imaged with system 1, with two also imaged with system 2 for comparison. Results : Systems 1 and 2 detected near-infrared fluorescence from indocyanine green concentrations of >250 ㎍/L and >31.3 ㎍/L, respectively. Intraoperatively, system 1 visualized strong near-infrared fluorescence from two, strongly gadolinium-enhancing meningiomas (SBR=2.4, 1.7). The high-resolution, bright images were sufficient for the surgeon to appreciate the underlying anatomy in the near-infrared mode. However, system 1 was not able to visualize fluorescence from a weakly-enhancing intraparenchymal metastasis. In contrast, system 2 successfully visualized both the meningioma and the metastasis but lacked high resolution stereopsis. Conclusion : Three-dimensional exoscope systems provide an alternative visualization platform for both standard microsurgery and near-infrared fluorescent guided surgery. However, when tumor fluorescence is weak (i.e., low fluorophore uptake, deep tumors), highly sensitive near-infrared visualization systems may be required.

성상신경절 부위의 직선편광 근적외선 조사 후 요골동맥에서의 혈류속도의 변화: 성상신경절 차단술과의 비교 (The Change of Blood Flow Velocity of Radial Artery after Linear Polarized Infrared Light Radiation near the Stellate Ganglion: Comparing with the Stellate Ganglion Block)

  • 한승문;이상철
    • The Korean Journal of Pain
    • /
    • 제14권1호
    • /
    • pp.37-40
    • /
    • 2001
  • Background: It had been reported by authors that linear polarized infrared light radiation (Superizer: SL) near the stellate ganglion had a similar effect on the change of skin temperature of hand compared with the stellate ganglion block (SGB). We hypothesized that this was due to dilatation of vessels and an increased blood flow. The aim of this study was to measure the velocity of blood flow in peripheral vessels after linear polarized infrared light radiation near the stellate ganglion and to compare the effect of SL with that of SGB using local anesthetics. Methods: Forty patients whose clinical criteria were matched for the symptoms of SGB were selected for study. We radiated the stellate ganglion by linear polarized infrared light radiation and measured the blood flow of radial artery using Ultrasound Doppler blood flow meter before and after 10, 20 and 30 minutes post-radiation. After 3 days, SGB was performed using 8 ml of 1% mepivacaine to the same patient, and the radial artery blood flow was measured in the same manner. Results: The blood flow velocity was increased by 40% and 27% at 10 min and 20 min after SL and by 42% and 41% at 10 min and 20 min after SGB. However, there was no statistically significant difference in blood flow velocity between SGL and SGB. Conclusions: We could conclude that linear polarized radiation is a clinically simple and useful noninvasive therapeutic tool in clinical area.

  • PDF

THEORY AND PRINCIPLES OF NEAR INFRARED SPECTROSCOPY

  • Barton, Franklin E.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1012-1012
    • /
    • 2001
  • The elegant early experiments of Herschel demonstrated that there is light after the visible spectrum in a region we call the near infrared (NIR). This was followed by the work which showed that the spectrum went further into what we call the mid infrared (MIR). The MIR has been used for many years as a qualitative and quantitative region to measure constituent values. The MIR region contains the fundamental vibrations which can be theoretically calculated from symmetry rules and harmonic oscillator equations. The NIR is not as straight forward because the region from 400-2500 nm does not contain any of the fundamental vibrations only combination bands and overtones. Over the past fifty years efforts to understand the NIR have largely been ignored while the quantitative aspects of the region have been utilized. This presentation will focus on the efforts to define terms for NIR, examine the calculation of combination bands and overtones and ways to interpret the spectra. The interpretation of the NIR has been aided greatly in recent years by the use of two dimensional spectroscopy which allows the correlation of bands in one spectral region with that of the NIR.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF