• Title/Summary/Keyword: near-infrared absorption

Search Result 174, Processing Time 0.024 seconds

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Use of Near Infrared Spectroscopy in the Meat Industry

  • Akselsen, Thorvald M.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2000.11a
    • /
    • pp.1-14
    • /
    • 2000
  • The Near Infrared region of the energy spectrum was first discovered by Hershel in the year 1800. The principles of NIR is based on light absorption of specific organic chemical bonds. The absorption at each wavelength is measured and a spectre is obtained. The spectre is then treated mathematically and with the absorption data is converted to absolute units via a calibration. In the last two decades it has developed dramatically. With the invention of computers and the ability to treat a large amount of data in a very short time the use of NIR for many different purposes has developed very fast. During the last decade with the aid of very powerful PC's the application of NIR technology has become even more widespread. Now or days development of very robust calibrations can be done in a relatively short time with a minimum of resources. The use of Near Infrared Spectroscopy (NIR) in the Meat industry is relatively new. The first installations were taken into operation in the 80ties. The Meat Industry in often referred to as rather conservative and slow to embrace new technologies, they stay with the old and proven methods. The first NIR instruments used by the Meat Industry, and most other industries, were multipurpose build, which means that the sample presentation was not well suited to this particular application, or many other applications for that sake. As the Meat Industry grows and develops to meet the demands of the modern markets, they realise the need for better control of processes and final products. From the early 90 ties and onward the demand for 'rear time' rapid results starts growing, and some suppliers of NIR instruments (and instruments based on other technologies, like X-ray) start to develop and manufacture instrumentation dedicated to the particular needs of the Meat Industry. Today it is estimated that there are approximately 2000 rapid instruments placed in the Meat industry world-wide. By far most of these are used as at-line or laboratory installations, but the trend and need is moving towards real on-line or in-line solutions. NIR is the most cost effective and reproducible analytical procedure available for the twenty first century.

  • PDF

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF

Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter (근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향)

  • Kim, Seong-Il;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Kim, Young-Ho;Lee, Jong-Hwa;Choi, Deuk-Kyun
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.

USE OF NEAR INFRARED FOR THE QUANTITATIVE ANALYSES OF BAUXITE

  • Walker, Graham S.;Cirulis, Robyn;Fletcher, Benjimin;Chandrashekar, S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1171-1171
    • /
    • 2001
  • Quantitative analysis is an important requirement in exploration, mining and processing of minerals. There is an increasing need for the use of quantitative mineralogical data to assist with bore hole logging, deposit delineation, grade control, feed to processing plants and monitoring of solid process residues. Quantitative analysis using X-Ray Powder Diffraction (XRD) requires fine grinding and the addition of a reference material, or the application of Rietveld analysis to XRD patterns to provide accurate analysis of the suite of minerals present. Whilst accurate quantitative data can be obtained in this manner, the method is time consuming and limited to the laboratory. Mid infrared when combined with multivariant analysis has also been used for quantitative analysis. However, factors such as the absorption coefficients and refractive index of the minerals requires special sample preparation and dilution in a dispersive medium, such as KBr to minimize distortion of spectral features. In contrast, the lower intensity of the overtones and combinations of the fundamental vibrations in the near infrared allow direct measurement of virtually any solid without special sample preparation or dilution. Thus Near Infrared Spectroscopy (NIR) has found application for quantitative on-line/in line analysis and control in a range of processing applications which include, moisture control in clay and textile processing, fermentation processes, wheat analysis, gasoline analysis and chemicals and polymers. It is developing rapidly in the mineral exploration industry and has been underpinned by the development of portable NIR spectrometers and spectral libraries of a wide range of minerals. For example, iron ores have been identified and characterized in terms of the individual mineral components using field spectrometers. Data acquisition time of NIR field instruments is of the order of seconds and sample preparation is minimal. Consequently these types of spectrometers have great potential for in-line or on-line application in the minerals industry. To demonstrate the applicability of NIR field spectroscopy for quantitative analysis of minerals, a specific example on the quantification of lateritic bauxites will be presented. It has been shown that the application of Partial Least Squares regression analysis (PLS) to the NIR spectra can be used to quantify chemistry and mineralogy in a range of lateritic bauxites. Important, issues such as sampling, precision, repeatability, and replication which influence the results will be discussed.

  • PDF

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1627-1627
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M^{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima t and the variation of full width at half maximum w were strongly dependent on the detection position and the wavelength of the laser beam. At, t and w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1626-1626
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M_{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima $\Delta$t and the variation of full width at half maximum Δw were strongly dependent on the detection position and the wavelength of the laser beam. At, $\Delta$t and $\Delta$w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Optical and electrical properties of $C_{22}$-quinolinium(TCNQ) langmuir-glodgett films depending on the annealing temperatures ($C_{22}$-quinolinium(TCNQ) langmuir-blodgett 박막의 열처리 온도에 따른 광학적 및 유전특성)

  • 홍언식;유덕선;김태완
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.458-463
    • /
    • 1995
  • The optical and electrical properties of $C_{22}$-Quinolinium(TCNQ) Langmuir-Blodgett films have been studied depending on the annealing temperatures. The optimal properties were investigated using UV/visible(300-800[nm]) absorption spectra and FTIR(Fourier-transformed- infrared) absorption measurements. The electrical properties were investigated in a frequency range of 10[Hz]-13[MHz]. The UV/visible absorption spectra at room temperature show that there are four characteristic peaks at 320, 380, 494 and 678[nm]. These absorption peaks decrease very rapidly above the annealing temperature of 180[.deg. C], which is due to a structural change of TCNQ. The FTIR absorption measurements strongly support the result of the UV/visible absorption spectra, because the absorption peak of TCNQ- at 2181[$cm^{-1}$ /] also decreases above 140[.deg. C]. The frequency-dependent dielectric constant shows that there is a dielectric dispersion near 1[MHz] which is due to an orientational polarization of the molecules inside the film. The overall frequency-dependent dielectric constant is higher near 80[.deg. C]. It may be due to a softness of the alkyl chains.s.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF