• Title/Summary/Keyword: near optimal solution

Search Result 213, Processing Time 0.023 seconds

타부탐색, 메모리, 싸이클 탐지를 이용한 배낭문제 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.514-517
    • /
    • 1996
  • In solving multi-level knapsack problems, conventional heuristic approaches often assume a short-sighted plan within a static decision enviornment to find a near optimal solution. These conventional approaches are inflexible, and lack the ability to adapt to different problem structures. This research approaches the problem from a totally different viewpoint, and a new method is designed and implemented. This method performs intelligent actions based on memories of historic data and learning. These actions are developed not only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal solution, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The method intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this method uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. A side effect of so-called "pseudo moves", similar to "aspirations", supports these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied for intensification. To avoid redundant moves, short-term (tabu-lists), intermediate-term (cycle detection), and long-term (recording frequency and significant solutions for diversification) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

Job shop에서 평균처리시간 최소화를 위한 할당 규칙

  • 전태준;박성호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.310-313
    • /
    • 1996
  • Mathematical programming method for finding optimal solution of job shop scheduling is inadequate to real situation because fo too much computation time. In contrast, dispatching rule is helpful for reducing compuation time but is not guaranted to find optimal solution. The purpose of this paper is to develop a new dispatching rule and procedure to minimize mean flow time whose result is near the optimal solution for job shop scheduling. First step is to select machine which have shortest finishing operation time among the schedulable operations. Second step is to select operation with regard to estimated remaining operation time. The suggested rule is compared with nondelay and MWKR rule for three examples, and is confirmed to be most effective to minimize mean flow time.

  • PDF

Capacitor Placement in Radial Distribution Systems Using Chaotic Search Algorithm (방사상 배전계통의 커패시터 설치를 위한 카오스 탐색알고리즘)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.124-126
    • /
    • 2002
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, the method employing the chaos search algorithm is proposed to solve optimal capacitor placement problem with reducing computational effort and enhancing optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

  • PDF

A Global Optimization Technique for the Capacitor Placement in Distribution Systems (배전계통 커패시터 설치를 위한 전역적 최적화 기법)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.748-754
    • /
    • 2008
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, a global optimization technique, which employing the chaos search algorithm, is applied to solve optimal capacitor placement problem with reducing computational effort and enhancing global optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

Efficient Elitist Genetic Algorithm for Resource-Constrained Project Scheduling

  • Kim, Jin-Lee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.235-245
    • /
    • 2007
  • This research study presents the development and application of an Elitist Genetic Algorithm (Elitist GA) for solving the resource-constrained project scheduling problem, which is one of the most challenging problems in construction engineering. Main features of the developed algorithm are that the elitist roulette selection operator is developed to preserve the best individual solution for the next generation so as to obtain the improved solution, and that parallel schedule generation scheme is used to generate a feasible solution to the problem. The experimental results on standard problem sets indicate that the proposed algorithm not only produces reasonably good solutions to the problems over the heuristic method and other GA, but also can find the optimal and/or near optimal solutions for the large-sized problems with multiple resources within a reasonable amount of time that will be applicable to the construction industry. This paper will help researchers and/or practitioners in the construction project scheduling software area with alternative means to find the optimal schedules by utilizing the advantages of the Elitist GA.

Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

An Algorithm for Portfolio Selection Model

  • Kim, Yong-Chan;Shin, Ki-Young;Kim, Jong-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.65-68
    • /
    • 2000
  • The problem of selecting a portfolio is to find Un investment plan that achieves a desired return while minimizing the risk involved. One stream of algorithms are based upon mixed integer linear programming models and guarantee an integer optimal solution. But these algorithms require too much time to apply to real problems. Another stream of algorithms are fur a near optimal solution and are fast enough. But, these also have a weakness in that the solution generated can't be guaranteed to be integer values. Since it is not a trivial job to tansform the scullion into integer valued one simutaneously maintaining the quality of the solution, they are not easy to apply to real world portfolio selection. To tackle the problem more efficiently, we propose an algorithm which generates a very good integer solution in reasonable amount of time. The algorithm is tested using Korean stock market data to verify its accuracy and efficiency.

  • PDF

Economic Dispatch Algorithm for Unit Commitment (기동정지계획을 위한 경제급전 알고리즘)

  • Park, Jeong-Do;Lee, Yong-Hoon;Kim, Ku-Han;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1506-1509
    • /
    • 1999
  • This paper presents a new economic dispatch algorithm to improve the unit commitment solution while guaranteeing the near optimal solution without reducing calculation speed. The conventional economic dispatch algorithms have the problem that it is not applicable to the unit commitment formulation due to the frequent on/off state changes of units during the unit commitment calculation. Therefore, piecewise linear iterative method have generally been used for economic dispatch algorithm for unit commitment. In that method, the approximation of the generator cost function makes it hard to obtain the optimal economic dispatch solution. In this case, the solution can be improved by introducing a inverse of the incremental cost function. The proposed method is tested with sample system. The results are compared with the conventional piecewise linear iterative method. It is shown that the proposed algorithm yields more accurate and economical solution without calculation speed reduction.

  • PDF

Genetic Algorithm Using-Floating Point Representation for Steiner Tree (스타이너 트리를 구하기 위한 부동소수점 표현을 이용한 유전자 알고리즘)

  • 김채주;성길영;우종호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1089-1095
    • /
    • 2004
  • The genetic algorithms have been used to take a near optimal solution because The generation of the optimal Steiner tree from a given network is NP-hard problem,. The chromosomes in genetic algorithm are represented with the floating point representation instead of the existing binary string for solving this problem. A spanning tree was obtained from a given network using Prim's algorithm. Then, the new Steiner point was computed using genetic algorithm with the chromosomes in the floating point representation, and it was added to the tree for approaching the result. After repeating these evolving steps, the near optimal Steiner tree was obtained. Using this method, the tree is quickly and exactly approached to the near optimal Steiner tree compared with the existing genetic algorithms using binary string.

Stochastic Time-Cost Tradeoff Using Genetic Algorithm

  • Lee, Hyung-Guk;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.114-116
    • /
    • 2015
  • This paper presents a Stochastic Time-Cost Tradeoff analysis system (STCT) that identifies optimal construction methods for activities, hence reducing the project completion time and cost simultaneously. It makes use of schedule information obtained from critical path method (CPM), applies alternative construction methods data obtained from estimators to respective activities, computes an optimal set of genetic algorithm (GA) parameters, executes simulation based GA experiments, and identifies near optimal solution(s). A test case verifies the usability of STCT.

  • PDF