• Title/Summary/Keyword: near field emission

Search Result 133, Processing Time 0.039 seconds

Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성)

  • Hwang, Donghyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.126-132
    • /
    • 2018
  • SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

펄스 레이저 증착 방법으로 성장한 InGaZnO4 박막의 물리적 특성 연구

  • Hwang, Eun-Sang;Seo, Yu-Seong;Park, Su-Hwan;Bae, Jong-Seong;An, Jae-Seok;Hwang, Jeong-Sik;Park, Seong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.74-74
    • /
    • 2011
  • 최근 새로운 형태의 디스플레이에 관한 관심이 집중되고 있다. 이들 중 특히 투명 산화물 반도체는 기존의 실리콘 기반의 반도체에 비해 가시광 영역에서 높은 투과도를 보이며, 또한 기존의 비정질 실리콘 소자에 비해서 10 cm2/Vs이상의 높은 전하 이동도 값을 가진다. 본 연구에서는 투명 산화물 반도체 소재 중 InGaZnO4를 사용하여 펄스 레이저 방법으로 Al2O3 (0001)기판 위에 비정질 상태인 a-InGaZnO4 박막을 성장 시켰다. 박막의 증착 온도를 변화(RT, $50^{\circ}C$, $150^{\circ}C$, $250^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$)시켜 성장된 박막의 구조적, 화학적, 전기적 그리고 광학적 특성을 조사하였다. 증착 온도가 $450{\sim}550^{\circ}C$ 사이에서 박막의 상태가 비정질(amorphous)에서 polycrystalline으로 성장되는 것을 X-Ray Diffraction과 Field Emission-Scanning Electron Microscope를 이용하여 확인하였고 이는 InGaZnO4 박막의 결정화 온도가 $450^{\circ}C$ 이상임을 알 수 있었다. X-ray Photoelectron Spectroscopy를 통해서 target 물질과 성장된 박막의 조성 및 화학적 상태를 고찰한 결과, 박막의 결정성 변화가 화학적 상태 변화와는 무관하다는 사실을 알 수 있었다. 온도 의존 비저항 측정을 통해 박막이 반도체 성향을 가지는 것을 확인 하였다. 또한 Hall 측정 결과 증착 온도가 올라 갈수록 전하 밀도는 증가 하지만, 전하 이동도는 다결정 박막($550^{\circ}C$)에서 급격히 감소하고, 이로 인해 비저항 값이 크게 증가함을 알 수 있었다. 이는 다결정 박막 내 존재하는 grain boundary들이 이동도 값에 영향을 준다는 것으로 추측할 수 있다. Ultra violet-Visible-Near Infrared 측정을 통해 가시광 영역에서 80%이상의 투과율을 나타내며 증착 온도가 증가함에 따라 에너지 밴드갭(Eg)이 커지는 것을 확인 할 수 있는데 이는 Hall 측정 결과에서 확인한 전하 밀도의 증가로 인해 에너지 밴드갭이 커지는 Burstein-Moss 효과로 설명할 수 있다.

  • PDF

Radiation-induced transformation of Hafnium composition

  • Ulybkin, Alexander;Rybka, Alexander;Kovtun, Konstantin;Kutny, Vladimir;Voyevodin, Victor;Pudov, Alexey;Azhazha, Roman
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1964-1969
    • /
    • 2019
  • The safety and efficiency of nuclear reactors largely depend on the monitoring and control of nuclear radiation. Due to the unique nuclear-physical characteristics, Hf is one of the most promising materials for the manufacturing of the control rods and the emitters of neutron detectors. It is proposed to use the Compton neutron detector with the emitter made of Hf in the In-core Instrumentation System (ICIS) for monitoring the neutron field. The main advantages of such a detector in comparison the conventional β-emission sensors are the possibility of reaching of a higher cumulative radiation dose and the absence of signal delays. The response time of the detection is extremely important when a nuclear reactor is operating near its critical operational parameters. Taking Hf as an example, the general principles for calculating the chains of materials transformation under neutron irradiation are reported. The influence of 179m1Hf on the Hf composition changing dynamics and the process of transmutants' (Ta, W) generation were determined. The effect of these processes on the absorbing properties of Hf, which inevitably predetermine the lifetime of the detector and its ability to generate a signal, is estimated.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields (논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1173-1178
    • /
    • 2012
  • Water competition among domestic, industrial and agricultural sectors has been gradually heightened recently in Korea as the lack of water supply is expected in the near future. About 46% of nation's water use is consumed in paddy farming to produce rice. And the conservation of water resource and quality in agricultural sector is a pending issue in the nation's long term water management plan. New paddy rice farming techniques that use significantly less irrigation water are urgently required. System of Rice Intensification (SRI) that is now well known to produce more rice with less water consumption has not been tried in Korea yet. And environmental effect of SRI on greenhouse gases (GHGs) has not been well investigated. The objective of this study was to measure the effect of SRI on GHGs as well as water use and rice yield in a Korean paddy condition. Three experimental runoff plots $5{\times}15m$ in size were prepared at an existing paddy field. Runoff, GHGs emission and water quality were measured during the 2011 growing seasons while a Japonica rice variety was cultivated. Rice plants grew better and healthier in SRI plots than in continuously flooded (CF) and intermittently drained (ID) plots. Rice yield from SRI plots increased 112.8 (ID)~116.1 (CF)% compared with CF and ID plots. Irrigation requirement of SRI plots compared to CF plot reduced by 52.6% and ID plot reduced by 62.0%, meaning that about 37.9~47.4% of irrigation water could be saved. GHGs emission from SRI plots reduced by 71.8% compared to that from CF plot and by 18.4% compared to that from ID plot, meaning that SRI could help contribute to ease the greenhouse gas accumulation in the atmosphere. It was believed that SRI is a promising paddy farming technique that could increase rice yield, and reduce irrigation water requirement and GHGs emission not just in Korea but also other rice farming countries all over the world. However, it was recommended that long term studies under different conditions including rice variety, soil texture, water source, climate need to be conducted for reliable data for the development of environmental policies related to GHGs emission control and management.

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF