• Title/Summary/Keyword: near and far-field

Search Result 407, Processing Time 0.029 seconds

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Pressure Fluctuation Induced by Propeller Sheet Cavitation with Consideration of the Near Field Effect (근접장 효과를 고려한 추진기 얇은 층 캐비테이션에 의해 유기되는 변동압력에 관한 연구)

  • Seol, Han-Shin;Moon, Il-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.105-113
    • /
    • 2009
  • A theoretical study on the pressure fluctuation induced by a propeller was carried out in this study. The main objective of this study is to analyze the source mechanism of the pressure fluctuation induced by propeller sheet cavitation. To analyze the pressure fluctuation induced by propeller sheet cavitation, modern acoustic theory was applied. Governing equation of pressure fluctuation induced by sheet cavitation was derived using Ffowcs Williams proposed time domain acoustic approaches. Several factors affecting pressure fluctuation were analyzed based on the derived governing equation. Pressure fluctuation result was represented by combined results of the far field term and near field term. Finally, the physical mechanism of pressure fluctuation at the blade rate frequency was analyzed using numerically generated cavitation volume variation.

The acceleration of microscopic particles in the near field diffracted from the fiber end (광섬유의 Near field를 이용한 미세입자의 가속에 관한 연구)

  • Kang, Yong-Hoon;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.359-361
    • /
    • 1993
  • The force exerted on particles when the momentum of light is changed at the boundary is used in accelerating particles in the fluid. So far, particles are accelerated by the gaussian beam focused by lenses or microscopic objectives. In this paper, particles arc moved by the light diffracted from the fiber end. And we proposed the possibility of particle acceleration using the fiber end.

  • PDF

A Study on the Electromagnetic shielding Effectiveness Using Conductive Polymers (전도성 고분자를 이용한 전자파 차폐효과의 연구)

  • 하남규;이보현;김태영;김종은;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The conductive polymers, polyaniline (PANI) emeralidin base and 3,4-polyethylene dioxythiophene(PEDOT) were synthesized and coated on the PET film dealt with acryl type primer to study the electromagnetic shielding effectiveness. When both PANI and PEDOT were coated on the PET film dealt with acryl type priemer, their surface properties such as he adhesive increased. For PANI, when blended with the binder such as PMMA, it adhesive and surface hardness increased, too. The visible light transmittance decreased, while the electromagnetic shielding effectiveness increased, when coated thickness of PANI and PEDOT increased. For PANI, the electromagnetic shielding effectiveness increased as its surface resistance decreased. For PANI, when the surface resistance was 140 Ω/$\square$, the shielding effectiveness was found to be 11 dB in the far field, and 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance was 200 Ω/$\square$, the shielding effectiveness was found to be 3 dB in the far field, and 7dB in the near field.

  • PDF

Evaluation of Near/Far Field and Directivity of Ultrasonic Transducer for Turbine Rotor Disc (터빈 로타 디스크의 초음파탐상을 위한 초음파탐촉자의 지향성 및 탐상범위)

  • Won, S.H.;Chang, H.K.;Cho, K.S.;Lee, J.O.;Lee, J.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.163-171
    • /
    • 1998
  • Near/far field length and directivity of transducers were investigated for the improvement and evaluation of the detectability of flaws in a disc. The reference block is fabricated for the disc of stage 6 in Yonggwang unit 1. The near/far field and directivity of an ultrasonic transducer with the center frequency of 5MHz were calculated for the inspection of the disc. These values showed good agreements with the experimental results. In the system composed of a wedge and a disc, those are evaluated theoretically and experimentally for the specimen with the artificial flaws of the size 2mm and 4mm and an ultrasonic transducer with the center frequency 5MHz and diameter 0.5inch. The detectability of keyway-flaw and detectable region for inspection were evaluated by using both tangential $45^{\circ}$ and $90^{\circ}$ transducers located at the distance of 53mm and 75mm from the disc hub, respectively.

  • PDF

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Study on Performance Enhancement of Microstrip Antenna Using EBG Structure (EBG 구조를 이용한 마이크로스트립 안테나의 성능 향상에 관한 연구)

  • Yoon, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.1
    • /
    • pp.44-52
    • /
    • 2014
  • In this study, the influence of the near field, far field and radiation directivity of microstrip patch antenna when is used mushroom EBG(Electromagnetic Band Gap) as ground is investigated. Using characteristic of dispersion diagram of mushroom EBG, we calculated forbidden band(2.36GHz-2.85GHz) given mushroom type EBG microstrip antenna(2.45GHz) having 2-layer EBG that is operating within forbidden band. In oder to conform performance enhancemen of antenna using EBG ground, we have compared with the antenna using PEC(Perfect Electric Conductor) ground. We could know about 2.74dB increment of the radiation directivity, because EBG can suppress surface wave that is generated at interfaces of the dielectrics-conductor.

The Mode Analysis for field pattern analysis of a Finite Periodic Dielectric Structure (유한한 유전체 격자구조에서 필드패턴 분석을 위한 모드연구)

  • Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.645-648
    • /
    • 2008
  • In this paper, we analyze inner- and far-field emitted field pattern by more exactly calculating modes formed from a finite periodic dielectric structure(FPDS). It is assumed that TE-modes are generated in FPDS, and the fields in each layer are determined by proper boundary conditions. Consequently, the fields generate modes in the FPDS and the number of modes depends on its structural characteristics. In this work, the modes betwween dielectric layers and their field patterns are calculated in a specific frequency. In addition. far field patterns are given by using FFT of the calculated modes.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.