• Title/Summary/Keyword: navigation solution

Search Result 484, Processing Time 0.029 seconds

A Technology of Obstacle Avoidance of Mobile Robot (이동로봇의 장애물 회피기술)

  • Oh, Se-Bong;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.132-145
    • /
    • 2008
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

Performance Analysis of INS/GPS Integration System (INS/GPS 결합방식에 따른 성능분석)

  • Park, Young-Bum;Lee, Jang-Gyu;Park, Chan-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2433-2435
    • /
    • 2000
  • Inertial Navigation System(INS) provides short-term accurate navigation solution but its error grows with time due to integration characteristics. Meanwhile, Global Positioning System(GPS) provides long-term stable solution but it has poor error characteristics in high dynamic region. So for its synergistic relationship, an integrated INS/GPS systems has been widely used as an advanced navigation system. Generally, two kinds of integration method are used. One is loosely coupled mode which uses GPS-derived position and velocity as measurements in an integrated Kalman filter. The other is tightly coupled one which uses pseudorange and pseudorange rate as Kalman filter measurements. In this paper the system error models and observation models for two kinds of integrated systems are derived, respectively, and their performance are compared through Monte-Carlo simulations.

  • PDF

Fixed Point Algorithm for GPS Measurement Solution (GPS 관측치 위치계산을 위한 부동점 알고리즘)

  • Lim, Samsung
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2000
  • A GPS measurement solution, in general, is obtained as a least squares solution since the measurement includes errors such as clock errors, ionospheric and tropospheric delays, multipath effect etc. Because of the nonlinearity of the measurement equation, we utilize the nonlinear Newton algorithm to obtain a least squares solution, or mostly, use its linearized algorithm which is more convenient and effective. In this study we developed a fixed point algorithm and proved its availability to replace the nonlinear Newton algorithm and the linearized algorithm. A nonlinear Newton algorithm and a linearized algorithm have the advantage of fast convergence, while their initial values have to be near the unknown solution. On the contrary, the fixed point algorithm provides more reliable but slower convergence even if the initial values are quite far from the solution. Therefore, two types of algorithms may be combined to achieve better performance.

  • PDF

A Non-coherent UWB Direct Chaotic Ranging System for Precision Location and Positioning

  • Yang, Wan-Cheol;Lee, Sang-Yub;Lee, Kwang-Du;Kim, Ki-Hwan;Yang, Chang-Soo;Kim, Hak-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.311-315
    • /
    • 2006
  • Precision location and positioning of Asset within a network is an attractive feature with various applications, especially in indoor environments. Such a demand is met by the standard task group, IEEE 802.15.4a. Several methods, that is, pulse, chirp and chaotic communications have been proposed so far to satisfy the requirements of the standard. Among them, ultra wideband direct chaotic communications has advantageous features such as low hardware complexity, low cost, lower power consumption and flexible frequency band plan. In this paper, the feasibility of the ranging system using non-coherent chaotic transceiver is investigated by designing and implementing the system and the performance is proved by conducting location experiments in real indoor environments.

  • PDF

A Research on Introducing Software Quality Concept to e-Navigation (e-navigation에 소프트웨어 품질 개념 도입 방안 연구)

  • Lee, Seo-Jeong;Ko, Byung-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.98-99
    • /
    • 2012
  • The development of e-navigation implementation strategy plan has been conducting by IMO NAV sub-committee. By the result of gap analysis, software technique would be a part of solution to fill the gap. This paper insists that software quality concept has to be considered to make reliable to e-navigation software. The work of integrating or connecting with existed equipment or devices would depend on software mostly. This paper conduct surveys on introducing software quality concept to e-navigation.

  • PDF

A Parallel Approach to Navigation in Cities using Reconfigurable Mesh

  • El-Boghdadi, Hatem M.;Noor, Fazal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • The subject of navigation has drawn a large interest in the last few years. Navigation problem (or path planning) finds the path between two points, source location and destination location. In smart cities, solving navigation problem is essential to all residents and visitors of such cities to guide them to move easily between locations. Also, the navigation problem is very important in case of moving robots that move around the city or part of it to get some certain tasks done such as delivering packages, delivering food, etc. In either case, solution to the navigation is essential. The core to navigation systems is the navigation algorithms they employ. Navigation algorithms can be classified into navigation algorithms that depend on maps and navigation without the use of maps. The map contains all available routes and its directions. In this proposal, we consider the first class. In this paper, we are interested in getting path planning solutions very fast. In doing so, we employ a parallel platform, Reconfigurable mesh (R-Mesh), to compute the path from source location to destination location. R-Mesh is a parallel platform that has very fast solutions to many problems and can be deployed in moving vehicles and moving robots. This paper presents two algorithms for path planning. The first assumes maps with linear streets. The second considers maps with branching streets. In both algorithms, the quality of the path is evaluated in terms of the length of the path and the number of turns in the path.

KASS Message Scheduler Design

  • Yun, Youngsun;Lee, Eunsung;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.193-202
    • /
    • 2016
  • The Korea Augmentation Satellite System (KASS), which is under development in Korea as a Satellite Based Augmentation System (SBAS) is expected to broadcast SBAS messages to air space in Korea according to the international standards defined by the International Civil Aviation Organization (ICAO) and the Radio Technical Commission for Aeronautics (RTCA). Around 13 SBAS messages are broadcast in every second to transmit augmentation information which can be applicable to a wide area in common. Each of the messages requires a different update interval and time-out according to the characteristics, purpose, and importance of transmitted information, and users should receive and combine multiple SBAS messages to calculate SBAS augmented information. Thus, a time to take acquiring first SBAS position by users differs depending on broadcasting various SBAS messages with which order and intervals. The present paper analyzes the considerations on message scheduling for broadcasting of KASS augmentation information and proposes a design of KASS message scheduler using the considerations. Compared to existing SBAS systems, which have a wide range of service area, a service area of the KASS is limited to Korea only. Thus, the numbers of ionosphere grid points and satellites to be augmented are expected to be smaller than those of existing SBAS. By reflecting this characteristic to the proposed design, shortening of broadcast interval of KASS message is verified compared to existing SBAS and a measure to increase a speed of acquisition of user navigation solution is proposed utilizing remaining message slots. The simulation result according to the proposed measure showed that the maximum broadcast interval can be reduced by up to 20% compared to that of existing SBAS, and users can acquire KASS position solution faster than existing SBAS.

Implementation and Test of DGPS Integrity Monitoring System (DGPS 측정치 무결성 감시 시스템 구현 및 시험)

  • Yun, Youngsun;Park, Sungmin;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.104-112
    • /
    • 2002
  • Nowadays, many countries are interested in using CPS far navigation system of aircrafts, because it has technical and economic benefits. For the CPS based navigation system, the most important thing is reliability of the system. GPS navigation solution is very accurate. But when some faults are raised in the CPS navigation system of an aircraft, if they cannot be detected and alerts are not generated for pilots, the aircraft cannot be safe. So, I implemented an DGPS integrity monitoring system that detects faults of measurements and exclude the fault measurement from the satellite constellation used for calculating a navigation solution. This paper introduces 'the Least Square Residual Method' used to detect faults of measurements and the implemented real time integrity monitoring system using DGPS. To test the system, I operated the system under many different conditions. And from analysis of the data recorded, I could conclude that when the number of visible satellites was enough to detect faults, the system could detect the faults of measurements perfectly, isolate and exclude the fault measurement well. But for more reliable system, the measurement errors must be estimated more accurately and integrations of CPS and other instruments must be developed.

  • PDF

Computer Application to Celestial Navigation System (천문항법의 전산화에 관한 연구)

  • 신영길
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.1-21
    • /
    • 1989
  • The computer can be used to display a continuously updated list or plot of vessel position. The computer that accept input data from a number of different navigation systems, e.g., Loran , Satnav, Radar, Decca, Compass, Sextant with electrical output etc., can compute the position of a vessel relative to prerecorded objects. The celestial navigation system requires the computer to do not much calculation. Calculation are for trigonometeric, linear systems, finding roots of nonlinear equation and least square estimation etc, . In order to computerize the celestrial navigation system, these calculations must be programmed. The purpose of this thesis is to study the formulation, the design and the test of calculations of the coordinates of celestial bodies, the altitude correction and the solution of the navigational triangle processes.

  • PDF

Application and Analysis of 2D FRI (Finite Rate of Innovation) Super-resolution Technique in Vision Navigation (영상 항법에서의 2D FRI (Finite Rate of Innovation) Super-resolution 기법 적용 및 분석)

  • Yoo, Kyungwoo;Kong, Seung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In urban area, since multipath and signal attenuations frequently occur due to street trees, street lights and buildings, it is difficult to obtain accurate navigation solution using GPS. As these problems also impact negatively on the INS/GPS coupled system, implementing advanced transportation systems such as autonomous navigation system and Intelligent Transportation System (ITS) become quite hard. For this reason, to alleviate deterioration of navigation system performance in urban area, direction information extraction algorithm using vision system is proposed in this paper. 2D Finite Rate of Innovation (FRI) technique is applied to extract lane edges. The proposed technique is simulated using road images and feasibility of proposed technique is analyzed through the simulation results.