• Title/Summary/Keyword: navigation filter

Search Result 713, Processing Time 0.033 seconds

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

A EM-Log Aided Navigation Filter Design for Maritime Environment (해상환경용 EM-Log 보정항법 필터 설계)

  • Jo, Minsu
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • This paper designs a electromagnetic-log (EM-Log) aided navigation filter for maritime environment without global navigation satellite system (GNSS). When navigation is performed for a long time, Inertial navigation system (INS)'s error gradually diverges. Therefore, an integrated navigation method is used to solve this problem. EM-Log sensor measures the velocity of the vehicle. However, since the measured velocity from EM-Log contains the speed of the sea current, the aided navigation filter is required to estimate the sea current. This paper proposes a single model filter and interacting multiple (IMM) model filter methods to estimate the sea current and analyzes the influence of the sea current model on the filter. The performance of the designed aided navigation filter is verified using a simulation and the improvement rate of the filter compared to the pure navigation is analyzed. The performance of single model filter is improved when the sea current model is correct. However, when the sea current model is incorrect, the performance decreases. On the other hands, IMM model filter methods show the stable performance compared to the single model.

Performance Improvement of Low-cost DR/GPS for Land Navigation using Sigma Point Based RHKF Filter

  • Cho, Seong-Yun;Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1450-1455
    • /
    • 2005
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure land DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

  • PDF

A Tracking Algorithm for Autonomous Navigation of AGVs: Federated Information Filter

  • Kim, Yong-Shik;Hong, Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.635-640
    • /
    • 2004
  • In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.

Failure Detection of Multi-Sensor Navigation System (다중 센서 항법 시스템에서의 센서 측정 실패 감지 시스템에 관한 연구)

  • 오재석;이판묵;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.51-55
    • /
    • 1997
  • This study is devote to developing navigation filter for detecting sensor failure in multi-sensor navigation system. In multi-sensor navigation system, Kalman filter is generally used to fuse data of each sensors. Sensor failure is fatal in case that the sensor is used as external measurement of Kalman filter therefore detection and recovery of sensor failure is one the important feature of navigation filter. Generally each sensors have its specific feature in measuring navigational information. Fuzzy theory is proposed to detect external sensor failure and provide valid external measurement to Kalman filter avoiding filter divergence and instability. This idea is applied to Autonomous Underwater Vehicle(AUV) which has two navigation sensor i. e self contained inertial sensor and acoustic external sensor. 2 dimensional simulation result shows acceptable failure detection and recovery

  • PDF

Dead Reckoning Navigation System for Autonomous Mobile Robot using Indirect Feedback Kalman Filter (간접되먹임 필터를 이용한 이동로봇의 추측항법 시스템)

  • 박규철;정학영;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.827-835
    • /
    • 1999
  • In this paper, a dead reckoning navigation system for differential drive mobile robots is presented. The navigation system consists of two incremental encoders and a gyroscope. We have built a third order polynomial function for compensating the nonlinear scale factor errors of the gyroscope. We utilize an indirect Kalman filter that feeds back estimated errors to the main navigation system. Also, the observability of the filter is analyzed in order to systematically evaluate the filter's performance. Experimental results show that the proposed navigation system provides a reliable position and heading angle by mutually compensating the encoder and the gyroscope errors. The proposed filter also reduces the computational burden and enhances the navigation system's reliability. The observability analysis confirms the characteristics of inevitably unbounded position error growth in dead reckoning navigation systems.

  • PDF

Terrain Referenced Navigation for Autonomous Underwater Vehicles (자율무인잠수정의 지형참조항법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kwon, Jayhyun;Yu, Myeongjong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Improving the Performance of DR/GPS Integrated System For Land Navigation Using Sigma Point Based RHKF Filter (시그마 포인트 기반 RHKF 필터를 사용한 지상합법용 DR/GPS 결합시스템의 성능 향상)

  • Choi, Wan-Sik;Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.174-185
    • /
    • 2006
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

Comparison of Attitude Estimation Methods for DVL Navigation of a UUV (UUV의 DVL 항법을 위한 자세 추정 방법 비교)

  • Jeong, Seokki;Ko, Nak Yong;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.216-224
    • /
    • 2014
  • This paper compares methods for attitude estimation of a UUV(Unmanned Underwater Vehicle). Attitude estimation plays a key role in underwater navigation using DVL(Doppler Velocity Log). The paper proposes attitude estimation methods using EKF(Extended Kalman Filter), UKF(Unscented Kalman Filter), and CF(Complementary Filter). It derives methods using the measurements from MEMS-AHRS(Microelectromechanical Systems-Attitude Heading Reference System) and DVL. The methods are used for navigation in a test pool and their navigation performance is compared. The results suggest that even if there is no measurement relative to some absolute landmarks, DVL-only navigation can be useful for navigation in a limited time and range.