• Title/Summary/Keyword: natural ventilation greenhouse

Search Result 44, Processing Time 0.022 seconds

Effect of Side Openings and Greenhouse Width on the Natural Ventilation Performance (측창 및 온실 폭이 자연환기 성능에 미치는 영향)

  • Hyun Woo Lee;Young Hoe Woo;Jong Won Lee
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2023
  • In summer, the natural ventilation performance for varying greenhouse width is very important in the glasshouses for year round cultivation. The effect of the side openings and greenhouse width on natural ventilation performance was analyzed by simulation. The necessary ventilation rate with different solar radiation transmittance increased significantly when the outside temperature grows higher. The necessary ventilation rate of 40% transmittance was about half of that of 90% transmittance. In consequence, shading effect on temperature control in greenhouse is significant in summer. When the total area of the openings for ventilation is constant, the maximum ventilation rate happens when the area of roof openings is equal to the area of side openings. This maximum ventilation rate is about 3 times of that of the greenhouse with roof openings and without side openings. Therefore, the side openings are advantageous to improve the natural ventilation in greenhouses. As the greenhouse width increases, the influence of side openings on the ventilation rate is becoming smaller. If the natural ventilation rate of the greenhouse with roof and side openings is to become double of that of the roof openings only, the width should be narrower than 38.4m for the Venlo type and 64m for Wide span type.

Current Status in U.S. Greenhouse Production and Newly Designed Naturally Ventilated Greenhouse in America

  • Lee, In-Bok;Sase, Sadanori;Short, Ted H.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.122-125
    • /
    • 1999
  • Ventilation is the primary method of controlling greenhouse air temperature, relative humidity, and carbon dioxide concentration. Two types of ventilation systems that are normally used are natural and fan. While fan ventilation is typically achieved with one wall as an inlet and the opposite wall as a fan outlet, natural ventilation is generally achieved by air exchanges that occur through multiple controlled openings due to natural pressure variations inside and outside the greenhouse. (omitted)

  • PDF

Analysis of Natural Ventilation Characteristics of Venlo-type Greenhouse with Continuous Roof Vents (연속형 천창을 가진 벤로형 온실의 자연환기 특성 분석)

  • Kwon, Jin-Kyeong;Lee, Sung-Hyun;Seong, Jae-Hoon;Moon, Jong-Pil;Lee, Soo-Jang;Choi, Byeong-Min;Kim, Kyeong-Ja
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.444-452
    • /
    • 2011
  • In this study the characteristics of natural ventilation of Venlo-type greenhouse with continuous roof vents were analyzed using commercial computational fluid dynamics (CFD) code. Developed CFD simulation model was verified by comparison with experimental data. Simulation errors were 1.9-46.0% for air velocity and 1.7-11.2% for air temperature at each measurement point. CFD simulations were conducted to estimate the effect of roof vents opening direction, opening angle, outside wind velocity and wind directions on ventilation rate and climate condition in greenhouse. The results of this study showed that ventilation rate of the present greenhouse was increased linearly in proportion to the increase of roof vent opening angle and outside wind velocity over 2.0 m/s. According to the analysis on the effects of different roof vent opening direction, simultaneous opening of wind and leeward vents showed the highest ventilation rate and lowest mean temperature in greenhouse.

Evaluation of Natural Ventilation Performance for Multi-span Plastic Greenhouses (다연동 플라스틱 온실의 자연환기성능 평가)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Environmental measurements in the many different types of horticultural farms were carried out to evaluate the ventilation performance for multi-span plastic greenhouses according to the eaves height, the number of spans, the existence of side wall vents and the position of roof vents. Hydroponic tomatoes were being cultivated in all experimental greenhouses, and ventilation rates of the greenhouses were analyzed by the heat balance method. It showed that the ventilation rate in the greenhouse with 4 m eaves height increased about 22% compared to the greenhouse with 2 m eaves height. The ventilation rate in the greenhouse with 9 spans decreased about 17% compared to the greenhouse with 5 spans. In the greenhouse with 9 spans, if there were no side wall vents, the ventilation rate showed about a third of the case that side wall vents were open. Overall, as the eaves height was higher and the number of spans was smaller in multi-span greenhouses, the natural ventilation performance was better. And the ventilation performance was best in the greenhouse which the eaves height was high and the position of roof vents was ridge, not gutter. Therefore, in order to maximize the natural ventilation performance, multi-span plastic greenhouses need to improve their structures such as that make the eaves height higher, place the roof vents on the ridge, install the side wall vents as much as possible, and the number of spans is limited to about 10 spans.

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.

Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD (전산유체역학을 통한 간척지 내 벤로형 온실의 자연환기량 분석)

  • Lee, Sang-Yeon;Lee, In-Bok;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Yeo, Uk-Hyeon;Park, Se-Jun;Kim, Rack-Woo;Jo, Ye-Seul;Lee, Seung-No
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.21-33
    • /
    • 2015
  • Recently, the Korean government announced a new development plan for a large-scale greenhouse complex in reclaimed lands. Wind environments of reclaimed land are entirely different from those of inland. Many standard books for ventilation design didn't include qualitative standard for natural ventilation. In this study, natural ventilation rates were analyzed to suggest standard for ventilation design of venlo type greenhouse built on reclaimed land. CFD (Computational Fluid Dynamics) simulation models were designed according to the number of spans, wind conditions and vent openings. The wind profile at a reclaimed land was designed using ESDU (Engineering Sciences Data Unit) code. Using the designed CFD simulation model, ventilation rates were computed using mass flow rate and tracer gas decay method. Additionally computed natural ventilation rates were evaluated by comparing with ventilation requirements. As a result of this study, ventilation rates were decreased with increasing of the number of spans. Ventilation rates were linearly increased with increasing of wind speed. When the wind speed was $1.0\;m{\cdot}s^{-1}$, only side vent was open and wind direction was $45^{\circ}$, homogeneity of ventilation rate at 0~1 m height is the worst. Finally, chart for computing natural ventilation rate was suggested. The chart was expected to be used for establishing standard of ventilation design.

Analysis of the efficiency of natural ventilation in a multi-span greenhouse using CFD simulation (CFD 시뮬레이션을 이용한 연동형 온실 내 자연환기의 효율성 분석)

  • Short, Ted H.
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • Natural ventilation in a four and one-half span, double polyethylene commercial greenhouse was investigated with actual data collected at Quailcrest Farm near Wooster, Ohio. Moreover, a computational fluid dynamics (CFD) numerical technique, FLUENT V4.3, was used to predict natural ventilation rates, thermal conditions, and airflow distributions in the greenhouse. The collected climate data showed that the multi-span greenhouse was well ventilated by the natural ventilation system during the typical summer weather conditions. The maximum recorded air temperature difference between inside and outside the greenhouse was 3.5$^{\circ}C$ during the hottest (34.7$^{\circ}C$) recorded sunny day; the air temperatures in the greenhouse were very uniform with the maximum temperature difference between six widely dispersed locations being only 1.7$^{\circ}C$. The CFD models predicted that air exchange rates were as high as 0.9 volume per minute (A.C. .min$^{-1}$ ) with 2.5m.s$^{-1}$ winds from the west as designed.

  • PDF

Actual State of Practical Use and Thermal Environment of Greenhouses in Summer Season (하절기 온실의 활용실태 및 열환경분석)

  • 남상운;김문기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.418-423
    • /
    • 1999
  • This study was performed to find an efficient method to overcome extremely high temperature within greehhouse in summer season. The actual states of practical use for greenhouse in hot summer season were investigated. About 21.6% of the investigated greenhouse farms were no cultivation, and most greenhouse farms were cultivating under the very inferior environment . To examine thermal enviornment of greenhouse according to cooling or assistant cooling , greenhouses were treated with natural ventilation, shading, roof sprinkling , and evaporative cooling with air cool fan. Shading and operating air col fan showed a drop in temperature of 3.8∼4.2$^{\circ}C$ as compared with natural ventilation, and most greenhouse air temperatures were maintained below 35$^{\circ}C$.

  • PDF

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Newest Computational Technology for Greenhouse Production Systems - Computational Fluid Dynamics(CFD) Numerical Techniques

  • Lee, In-Bok;Short, Ted H.;Sase, Sadanori
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.126-129
    • /
    • 1999
  • Natural ventilation is achieved by air exchanges through multiple openings due to natural pressure variations inside and outside the greenhouse. Wind is the primary driving force making natural ventilation systems very difficult to design properly because of variations in wind velocity and direction. The optimization of these systems for acceptable climate control requires a thorough knowledge of the airflow rates and patterns as related to weather conditions and greenhouse structural details. (omitted)

  • PDF