• Title/Summary/Keyword: natural ventilation

Search Result 429, Processing Time 0.029 seconds

Experiments on the Effective Engine Room Ventilation in a Power Car (동력 철도차량 기관실의 효과적인 환기에 관한 실험적 연구)

  • Han, S.Y.;Lee, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.3
    • /
    • pp.166-176
    • /
    • 1990
  • Experimental study was made to find the effective ways for cooling of engine room in a power car through natural ventilation, forced ventilation and wind tunnel test of 1:10 model. Through the measurements of inner temperature of engine room and pressure distribution of model surface for the various opening combinations and the fan locations, the following results are obtained. For natural ventilation, side and top opening combination is more effective than the side openings only and optimal opening combination is all side openings with top center opening. For forced ventilation with fan on the roof, the combination of all sides and top opening is more effective than the combination of side and top opening, and the optimal location of fan is top center. When the model is located in the air stream, the combination of side and top opening is more effective than the side openings only, and the optimal location of top opening is the front opening. With both air stream and forced ventilation, the optimal location of fan is the side region, and the direction of side grill installation is found to have negligible effect on the room ventilation.

  • PDF

A Prediction of Hybrid Ventilation System Performance in Apartment House (제3종 하이브리드 환기시스템을 적용한 공동주택의 환기성능 예측)

  • Hwang Ji-Hyeon;Oh Chang-Yong;Kim Moo-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.541-548
    • /
    • 2006
  • A hybrid ventilation system was introduced to predict the ventilation performance of the apartments. This ventilation system was composed of the natural supply-air inlet and the forced exhaust-air outlet. Analysis was conducted by CFD technique and was performed on three ventilating flow rates; 30, 60, $120m^3/h$. As the results, residents feel comfortable thermally for $60m^3/h$. In the case of $120m^3/h$, however, residents feel uncomfortable both thermally and in air currents. In this study the energy saving for space heating is also an important factor. In the case of whole region with $180m^3/h$, residents feel comfortable at each region of the model apartment. It is shown that this hybrid ventilation system is possible method for the apartment house.

Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation (창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드)

  • Lee, Jisun;Lee, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

The Study on the Indoor Air Quality in a Newly Built Apartment Rouse by Field Measuring (실측을 통한 신축공동주택의 실내공기질에 관한 연구)

  • Lee Kyung-Hee;Bae Jong-Soo;Cho Sung-Woo;Park Min-Yong;Park Chang-Sub;Choi Jeong-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.4
    • /
    • pp.111-117
    • /
    • 2006
  • The harmfulness of HCHO and VOCs from construction material and furniture has been increased gradually. It must be need to prevent pollution materials' accumulation indoor effectively and to remove very small amount of harmful pollution materials in various plans, because these kinds of pollution materials greatly affect human body, Therefore, this study is focused to find out the improvements of Indoor Air Quality in execution of natural ventilation and bakeout to reduce indoor chemical pollution materials or not. After effects of indoor air quality by natural ventilation and bake-out being examined, it is follows the conclusion. As for the density change of TVOC and Toluene according to time lapse, in case the middle and high-story areas have bake-out, the density increased once, but it showed the gradual decrease after bake-out was stopped, and it was shown that it exceeded the standards recommended for newly built apartment. The bake-out is effective to discharge the HCHO and TVOC from the construction material and the furniture, and the natural ventilation is effective remove the indoor pollution materials.

Development of a Natural Ventilation Model in a Single Zone Building with Large Openings (큰 개구부를 가진 단일구획 빌딩에서의 자연환기 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.359-369
    • /
    • 2018
  • A model has been developed to predict natural ventilation in a single zone building with large openings. This study first presents pressure-based equations on natural ventilation, that include the combined effect of wind and thermal buoyancy. Moreover, the concept of neutral pressure level(NPL) is introduced to consider the two-way flow through a large opening. The total pressure differences across the opening and the NPL are calculated, and nonlinear equations are solved to find the zonal pressure to satisfy mass conservation. For this analysis, an iterative technique of successively approximating the zonal pressure is used. The results of applying this study model to several simple cases are as follows. When there is no wind and only the stack effect is caused, a one-way flow occurs in both the top and bottom openings in the case of two openings of equal-area, and a one-way flow occurs in the top opening; however, a two-way flow occurs in the bottom opening in the case of two openings of unequal-area. When there is a wind effect, regardless of whether the outside air temperature is lower or higher than the indoor air temperature, air flows into the room through the bottom opening and out of the room through the top opening. As the wind velocity increases, the wind effect appears to be more influential than the stack effect owing to the temperature difference.

A Study on the Application Method of Passive Cooling Technology in Contemporary Architecture (현대 건축공간에서 버네큘러 주거 냉방기법의 적용방법에 관한 연구)

  • Yoon, Jae-Young;Hur, Yong-Seok;Hur, Bum-Pall
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2010
  • Recent days, transition to ecological thought is being accelerating by environmental impact with a sustainable development. This symptom is no exception in architecture area. So is vernacular design affecting on modern architecture in many ways in terms of economical aspect and eco-friendly environment as well. Natural energy like solar power, environment, and terrestrial heat that applied in vernacular architecture is also widely accepted in name of 'sustainable energy' of which a design applied with ventilation and airing of natural wind is very useful & pragmatic in terms of economical reason. Accordingly, this study examined a relation between vernacular architecture and natural wind and compared it with traditional type and its feature of ventilation & airing. Ventilation & airing applied in the past can be divided into three categories: methods by convection, natural element, and architectural type. All these methods gave some pleasant felling indoors when there were no artificial energies. Even in modern age, such a ventilation & airing is being used with traditional type in different variety of materials, and it will be developed with modern technology without any extra cost in terms of sustainable expansion, and opened for further researches.

Study on Application of Shaft Box type Balcony for Improvement of Ventilation Performance in Apartment (공동주택의 환기성능 개선을 위한 Shaft Box형 발코니의 적용성 검토)

  • Roh, Ji-Woong;Kim, Gon
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, because of the continuous rise of international oil price, energy saving is strongly demanding. So, Ecological technics of architecture such as use of natural energy have been actively explored in the field of building. In the method of utilizing natural energy, the key point is to saving energy effectively as not lowering the comfort of indoor environment, various systems investigated. Many papers about double skin facade system have been reported, it is announced broadly that the system is very effective in improvement of natural ventilation and indoor thermal environment, and also protecting outdoor sound. The shaft box facade is a special form of box window construction. It consists of a system of box windows with continuous vertical shafts that extend over a number of stories to create a stack effect. The facade layout consists of an alternation of box windows and vertical shaft segments. This research investigated the natural ventilation performance of shaft box type balcony which conform the shaft box type double skin to the exiting balcony construction. First, analyzed various types of exiting apartments, proto-type was decided. By using virtual environment Program, modeling the proto-type, compared the contribution of air temperature and the effect of outdoor air cooling. by this research, we confirmed that shaft box type balcony had many possibility for improvement of indoor environment.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

Evaluation of Natural Ventilation Performance for Multi-span Plastic Greenhouses (다연동 플라스틱 온실의 자연환기성능 평가)

  • Nam, Sang-Woon;Kim, Young-Shik;Seo, Dong-Uk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Environmental measurements in the many different types of horticultural farms were carried out to evaluate the ventilation performance for multi-span plastic greenhouses according to the eaves height, the number of spans, the existence of side wall vents and the position of roof vents. Hydroponic tomatoes were being cultivated in all experimental greenhouses, and ventilation rates of the greenhouses were analyzed by the heat balance method. It showed that the ventilation rate in the greenhouse with 4 m eaves height increased about 22% compared to the greenhouse with 2 m eaves height. The ventilation rate in the greenhouse with 9 spans decreased about 17% compared to the greenhouse with 5 spans. In the greenhouse with 9 spans, if there were no side wall vents, the ventilation rate showed about a third of the case that side wall vents were open. Overall, as the eaves height was higher and the number of spans was smaller in multi-span greenhouses, the natural ventilation performance was better. And the ventilation performance was best in the greenhouse which the eaves height was high and the position of roof vents was ridge, not gutter. Therefore, in order to maximize the natural ventilation performance, multi-span plastic greenhouses need to improve their structures such as that make the eaves height higher, place the roof vents on the ridge, install the side wall vents as much as possible, and the number of spans is limited to about 10 spans.

A Study on the Site Planning of an Apartment Complex for Improving the Outdoor and Indoor Air Quality (아파트의 실내외 공기질 향상을 위한 주동 배치 계획 연구)

  • Shin, Jee-Woong;Kim, Tae-Yeon;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.195-202
    • /
    • 2004
  • This study focuses on the impacts of apartment building arrangements on the outdoor and indoor air quality - the efficiency of natural ventilation in the outside/inside area of an apartment with consideration to the characteristics of an air flow in outside area depending on the types of the arrangements, the main direction of the wind, and the outside wind pressure on the building facade. As indices to evaluate the efficiency of natural ventilation, the concepts of "Age of Air" and "Purging Flow Rate(PFR)" were used in this study. As indices to classify the efficiency of indoor natural ventilation, the mean values of the wind pressure differences between the front and the back elevations of an apartment building were used. The research showed that the PFR of each apartment building arrangement ranges from 0.867 to 3.253. The "minus-shaped" arrangement showed the highest PFR, 2.306; the "zigzag-shaped" arrangement measured 1.889; the "angle-shaped" arrangement measured 1.465, and the "square-shaped" arrangement measured 1.241. Depending on the direction of the wind, the pressure differences range extremely, with variations from 170% to 2300%. Thus, the indoor natural ventilation efficiency can be changed by the pressure differences of the wind, which are sensitive to the main direction of the wind even though the structure and planning of the apartment complexes are the same. Despite the same direction of the wind, even the efficiency can be diverse. This study showed how to predict the most beneficial apartment building arrangement for the profitable natural ventilation efficiency in each direction of the wind.