• Title/Summary/Keyword: natural salt

Search Result 461, Processing Time 0.034 seconds

Biomass partitioning and physiological responses of four Moroccan barley varieties subjected to salt stress in a hydroponic system

  • Said Bouhraoua;Mohamed Ferioun;Srhiouar Nassira;Abdelali Boussakouran;Mohamed Akhazzane ;Douae Belahcen;Khalil Hammani;Said Louahlia
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.115-126
    • /
    • 2023
  • A hydroponics experiment was performed to study the physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) varieties cultivated under salt stress conditions. Four barley varieties were grown under exposure to three salt concentrations, including 0, 200, and 300 mM NaCl. The ANOVA for both salt stress-sensitive and resistant varieties indicated that salt treatment represented the main source of variability in all studied traits. Salt treatment significantly reduced root and shoot dry weight (RDW and SDW), relative water content (RWC), and chlorophyll content (Chl a, Chl b, and Chl T). However, increases in electrolyte leakage (EL) along with proline and total soluble sugar (TSS) contents were recorded. In addition, large variations in all measured traits were found between varieties. The 'Massine' and 'Laanaceur' varieties displayed relatively higher RDW and SDW values. The 'Amira' and 'Adrar' varieties showed lower RWC values and Chl contents than those of the controls indicating their relative sensitivity to salt stress. Principal component analysis revealed that most of the variation was captured by PC1 (72% of the total variance) which grouped samples into three categories according to salt treatment. Correlation analyses highlighted significant associations between most parameters. Positive relationships were found between RDW, SDW, RWC, Chl content, and soluble proteins contents, while all of these parameters were negatively associated with EL intensity, proline content, and TSS content. The results from this study showed that the 'Massine' and 'Laanaceur' varieties were relatively salt-tolerant. These two salt-tolerant varieties present a good genetic background for breeding of barley varieties showing high salt tolerance.

Antibacterial Effects of Salt with Natural Antimicrobial Substances against Foodborne Pathogens (천연 항균물질이 첨가된 소금의 식중독 세균에 대한 항균효과)

  • Hyun, Jeong-Eun;Park, Se-Eun;Lee, Seo-Hyeon;Lee, Yeon-Jin;Jang, Min-Kyung;Moon, Sung-Kwon;Lee, Sun-Young
    • Journal of the FoodService Safety
    • /
    • v.1 no.1
    • /
    • pp.27-35
    • /
    • 2020
  • Salt is a common seasoning agent used in various processed foods, especially in kimchi and salted seafood (jeotgal). This study was conducted to investigate the efficacy of salt with antimicrobial substances (acetic acid, garlic extract, carvacrol, nisin, thymol, and their combination (acetic acid+nisin+thymol)) on improvement of antibacterial effects of salt against foodborne pathogens. Salt (10%) was prepared using six different types of 0.2% natural antimicrobial substances. The antibacterial effect of salt combined with natural antimicrobial substances was evaluated against foodborne pathogens using the broth micro-dilution method and growth curve plotted using absorbance measurements. For the five foodborne pathogens, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of salt without antimicrobial substances as control were in the range of 24~>50,000 ㎍/mL and >50,000 ㎍/mL, respectively. Salt with nisin, thymol, or garlic extract showed strong inhibitory effects and their MIC against L. monocytogenes were 49, 12,500, and 24 ㎍/mL, respectively. In particular, salt with nisin showed inhibitory activities against Gram-positive bacteria. However, all the antimicrobial substances were less effective against Gram-negative bacteria such as E. coli O157:H7 and S. Typhimurium than Gram-positive bacteria. These results could be used for the development of salt with natural antimicrobial substances especially targeted against L. monocytogenes. This would enable the lowering of saline concentration while improving the storability of food.

Influence of Natural Salt Treatments on Soil Chemical Properties and Inorganic Contents of Garlic (천일염 살포가 토양 화학성과 마늘(Allium sativum L.)의 무기성분 함량에 미치는 영향)

  • Kim, Myung-Sook;Kim, Yoo-Hak;Kang, Seong-Soo;Yun, Hong-Bae;Gong, Hyo-Young;Lee, Sang-Beom
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.2
    • /
    • pp.231-241
    • /
    • 2012
  • Farming using natural salts for supply of nutrients to crops is increasing recently. It is necessary to evaluate the salt accumulation in soil and the effects on crop growth by treatment of natural salt. This study was conducted at the organic cultivation fields which garlics were planted. The treatments were no natural salts (control) and plots applied 100~600 $kg\;ha^{-1}$ with natural salts. Soil samples were taken from the 0 to 25 cm depth at 12 and 107 day (harvest time) after natural salts application. The results showed that electrical conductivity (EC), exchangeable Na (Exch.$-Na^+$) and Cl- were increased by application of natural salts. But, pH and exchangeable cations ($K^+$, $Ca^{2+}$ and $Mg^{2+}$) had not significantly differences among treatments. In 300 $kg\;ha^{-1}$ plots of natural salt, the level of EC, Exch.$-Na^+$ and $Cl^-$ in top soil (0-5 cm) was were increased more 0.3, 3.7, and 12.7 times than control plot, respectively. EC, Exch.$-Na^+$, and $Cl^-$ were highest in the top 5 cm of soil and decreased with depth at 12 days after natural salts application, but were decreased in the plower layer (0-15cm) at the harvest time because they were leached with natural rain. An increasing the application level of natural salt resulted in increasing of sodium adsorption ratio, exchangeable sodium percentage, and percentage of soil dispersion. The concentration of nutrient uptake such as total nitrogen (T-N), chloride (Cl) in garlic had significant difference between control and plots applied with natural salts The content of T-N of garlic in plots with natural salt application was lower than control plot, but Cl is higher than control plot.

Mechanisms of Salt Transport in the Han River Estuary, Gyeonggi Bay (경기만 한강 하구에서의 염 수송 메커니즘)

  • Lee, Hye Min;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.13-29
    • /
    • 2021
  • A 3-D hydrodynamic model is applied in the Han River Estuary system, Gyeonggi Bay, to understand the mechanisms of salt transport. The model run is conducted for 245 days (January 20 to September 20, 2020), including dry and wet seasons. The reproducibility of the model about variation of current velocity and salinity is validated by comparing model results with observation data. The salt transport (FS) is calculated for the northern and southern part of Yeomha channel where salt exchange is active. To analyze the mechanisms of salt transport, FS is decomposed into three components, i.e. advective salt transport derived from river flow (QfS0), diffusive salt transport due to lateral and vertical shear velocity (FE), and tidal oscillatory salt transport due to phase lag between current velocity and salinity (FT). According to the monthly average salt transport, the salt in both dry and wet seasons enters through the southern channel of Ganghwa-do by FT. On the other hand, the salt exits through the eastern channel of Yeongjong-do by QfS0. The salt at Han River Estuary enters towards the upper Han River by FT in dry season, whereas that exits to the open sea by QfS0 in wet season. As a result, mechanisms of salt transport in the Han River Estuary depend on the interaction between QfS0 causing transport to open sea and FT causing transport to the upper Han River.

Development of New Surface Design Technique for Natural Dyeing of Silk Fabric by Salt-Shrinkage Finishing (염축가공에 의한 견직물 천연염색의 새로운 표면 디자인 구현기법 개발)

  • Kim, Chaeyeon;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.28 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • The objectives of this research were to study the effect of salt-shrinkage finishing of silk on shrinkage degree and dyeing property of cochineal, and to investigate the efficacy of obtained results for imparting surface design effect on silk fabric. Ultimately it was aimed to suggest a technical process for developing natural dyed silk products with diverse design. Premordanted silk fabric was treated with $Ca(NO_3)_2$ solution(gravity: 1.45) at $90^{\circ}C$ for 1 min, washed, dried for further evaluation. The shrinkage of salt-treated fabric was calculated. The effects of salt treatment on the dye uptake of cochineal and colorfastness were investigated. The degrees of shrinkage were 10% and 3% for warp and weft, respectively. The salt treatment resulted in improving dye uptake of cochineal slightly. In addition, it improved colorfastness to washing and light. On the basis of the results, a technical process composed of premordanting, salt treatment and natural dyeing was suggested and using the process, two examples of textile design were presented. It can be concluded to impart various three dimensional surface design effect on silk fabric by applying salt-shrinkage finishing with combination of natural dyeing and mordanting.

Plant Diversity and Conservation of Salt Marsh in Nonhyun-Dong, Inchoen (인천 논현동 일대 염습지의 식물다양성과 보존방안)

  • 정주영;이만우;조강현;최병희
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2000
  • The flora and vegetation of salt marsh region in Nonhyun-dong, Incheon were investigated from June 1999 to June 2000. The surveyed region includes the several abandoned salt farms and natural salt marshes developing along the intertidal zone at the stream of the Sorae Inlet, Yellow Sea and is going to be constructed a costal ecopark. In this survey 14 species of halophytes were collected in the region, among them Suaeda maritima is the most common one, Salicornia herbacea, Artemisia scoparnia and Aster tripolium are also observed popularly. The flora of the abandoned salt farms is very similar to that of the natural salt marshes. However, the bank areas between the abandoned salt farms and the natural salt marshes showed more richness of species diversity including 21 naturalized plants. The vegetations on the natural salt marshes are mainly composed of Suaeda maritima -Artemisia scoparnia and Suaeda maritima communities. On the other hand, various plant communities were investigated in the abandoned salt farms such as Suaeda maritima-Salicornia herbacea, Phragmites communis-Typha angustata, Suaeda asparagoides -Suaeda maritima and Phragmites communis communities. Based on the plant physiognomy and species diversity, the region can be divided into three types of area for conservation, that is, the area composed of well-developed vegetation, disturbed one by human activities and plant withering area. Futhermore, according to the construction of the costal ecopark in the region the conservation scheme for each area was discssed.

  • PDF

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Development of strategies to manufacture low-salt meat products - a review

  • Aprilia, Gracia Henreita Suci;Kim, Hyeong Sang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.218-234
    • /
    • 2022
  • Urbanization is usually followed by changes in eating habits, with a specific trend toward the consumption of ready-to-eat products, such as processed foods. Among the latter, meat products are known contributors to high dietary sodium owing to salt addition. Salt plays an essential role in maintaining the quality of meat products in terms of acceptability and safety. However, an excessive salt intake is linked to high blood pressure and cardiovascular diseases. Hence, several studies have been competing for the discovery of salt alternatives performing in a similar way as common salt. A number of replacements have been proposed to reduce salt consumption in meat products while taking into account consumer preferences. Unfortunately, these have resulted in poorer product quality, followed by new adverse effects on health. This review addresses these recent issues by illustrating some established approaches and providing insight into further challenges in developing low-salt meat products.

Mapping of Quantitative Trait Loci for Salt Tolerance at the Seedling Stage in Rice

  • Lee, Seung Yeob;Ahn, Jeong Ho;Cha, Young Soon;Yun, Doh Won;Lee, Myung Chul;Ko, Jong Cheol;Lee, Kyu Seong;Eun, Moo Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2006
  • Salt tolerance was evaluated at the young seedling stage of rice (Oryza sativa L.) using recombinant inbred lines (MG RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). 22 of 164 MG RILs were classified as tolerant with visual scores of 3.5-5.0 in 0.7% NaCl. Interval mapping of QTLs related to salt tolerance was conducted on the basis of the visual scores at the young seedling stage. Two QTLs, qST1 and qST3, conferring salt tolerance, were detected on chromosome 1 and 3, respectively, and the total phenotypic variance explained by the two QTLs was 36.9% in the MG RIL population. qST1 was the major QTL explaining 27.8% of the total phenotypic variation. qST1 was flanked by Est12~RZ569A, and qST3 was flanked by RG179~RZ596. The detection of new QTLs associated with salt tolerance will provide important information for the functional analysis of rice salt tolerance.

Experimental Study on Physical Properties and Water Absorption Resistance Evaluation of Cement Mortar Incorporating Inorganic Metal Salt-based Water Repellent Powder (무기물 금속염계 발수분체를 혼입한 시멘트 모르타르의 물리적 특성 및 수분흡수저항성에 대한 실험적 연구)

  • Lee, Won Geun;Yoon, Chang Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.609-616
    • /
    • 2021
  • In this experimental, water-repellent powder, which is a metal salt-based inorganic substance, and natural zeolite powder, which is a pozzolan-based material, were mixed into cement mortar, and their physical properties and resistance to moisture were confirmed. It was confirmed that the test specimen using natural zeolite at the same time had excellent resistance in the water permeation test and the chloride penetration test as compared with the test specimen in which the inorganic metal salt-based water-repellent powder was mixed alone. When a metal salt-based water-repellent powder is used, it cannot be uniformly dispersed inside water due to its insoluble property, and is limited to the surface. When used at the same time as natural zeolite, the setting time at the initial stage of hydration is fast due to the pozzolan reaction, and the water-repellent powder adheres to the porous of the natural zeolite and is evenly distributed inside the test specimen to generate some water resistance.