• Title/Summary/Keyword: natural rubber bearing

Search Result 40, Processing Time 0.022 seconds

The Estimated Stiffness of Rubber Pads for Railway Bridges (철도교용 고무패드의 강성 추정기법)

  • Oh, Saeh Wan;Choi, Eun Soo;Jung, Hie Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.307-316
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested a method of determining the stiffness and the damping ratio of the pads.The stiffness of rubber pads can be estimated by a direct static test and a dynamic test indirectly.This study used both methods to determine the pad's stiffness.The damping ratio of pads can be obtained using the dynamic test and the damping ratio of polyurethane rubber pads was estimated to aproximate that of natural and chloroprene rubber pads.The polyurethane rubber pads are harder than natural and chloroprene rubber pads and thus carry larger load bearing capacity.In addition, they showed higher stiffness with the same shape factor than the others and thus are more available for bridge bearings.Although natural and chloroprene rubber pads are elongated to large deformation in the horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless of the thickness and hardness of the pads.Therefore, they do not need reinforced plate to restrict horizontal deformation.

A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis (진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구)

  • Kim, Hu-Seung;Oh, Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.601-611
    • /
    • 2016
  • The research, development and use of seismic isolation systems have been increasing with the gradual development of structure safety assurance methods for earthquakes. The High Damping Rubber Bearing (HDRB), one type of seismic isolation system, is a Laminated Rubber Bearing using special High Damping Rubber. However, as its damping function is slightly lower than that of the Lead Rubber Bearing, a similar seismic isolation system, its utilization has not been high. However, the HDRB has a superior damping force to the Natural Rubber Bearing, which has similar materials and shapes, and the existing Lead Rubber Bearing has a maleficence problem in that it contains lead. Thus, studies on HDRBs that do not use lead have increased. In this study, a test targeting the HDRB was done to examine its various dependence properties, such as its compressive stress, frequency and repeated loading. To evaluate the HDRB's seismic performance in response to several earthquake waves, the shaking table test was performed and the results analyzed. The test used the downscaled bridge model and the HDRB was divided into seismic and non-seismic isolation. Consequently, when the HDRB was applied, the damping effect was higher in the non-seismic case. However, its responses on weak foundations, such as in Mexico City, represented increased shapes. Thus, its seismic isolator.

Experimental study on fracture behavior of SCC pavement slab containing crumb rubber under cyclic loading

  • Wang, Jiajia;Chen, Xudong;Wu, Chaoguo;Shi, Zhenxiang;Cheng, Xiyuan
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • The increase in waste tires has brought serious environmental problems. Using waste tires rubber particles as aggregate in concrete can reduce pollution and decrease the usage of natural aggregate. The paper describes an investigation on flexural bearing capacity of self-compacting concrete (SCC) pavement slabs containing crumb rubber. Cyclic loading tests with different stress ratios and loading frequencies are carried out on SCC pavement slabs containing crumb rubber. Based on Paris Law and test data, the fatigue life of SCC pavement slab containing crumb rubber is discussed, and a revised mathematical model is established to predict the fatigue life of SCC pavement slab containing crumb rubber. The model applies to different stress ratios and loading frequencies. The fatigue life of SCC pavement slab containing crumb rubber is affected by the stress ratio and loading frequency. The fatigue life increases with the increase of stress ratio and loading frequency. Real-time acoustic emission (AE) signals in the SCC pavement slab containing crumb rubber under cyclic loading are measured, and the characteristics of crack propagation in the SCC pavement slab containing crumb rubber under different stress ratios and loading frequencies are compared. The AE signals provide abundant information of fracture process zone and crack propagation. The variation of AE ringing count, energy and b-value show that the fracture process of SCC pavement slab containing crumb rubber is divided into three stages.

Damping and Isolation Performance of Steel Structure (철골 구조물의 제진 및 면진성능)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Hwang, Sun-Kyoung;Lee, Giu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.221-230
    • /
    • 2004
  • In this paper, the dynamic response of a multi-story steel moment resisting frame equipped with viscoelastic dampers or lead rubber bearing type isolators subjected to seismic loads is investigated analytically. The objective of this study is to find the best location of viscoelastic dampers by the maximum stress method and maximum story drifts method from structure analysis. Also, a secondary objective of the study is to compare the member force, combined stress, and natural period of the structure retrofitted with viscoelastic dampers or lead rubber bearing type isolators to find effective vibration control method.

Shear Characteristics of Elastomeric Bearing Rubber Deteriorated by Accelerated Heat Aging(2): Chloroprene Rubber (가속열 노화로 열화된 탄성받침 고무재료의 전단 특성(2): 합성고무)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.103-110
    • /
    • 2021
  • Elastomeric bearings composed of flexible rubber materials and steel reinforcement plates are widely used for seismic retrofit of bridges due to their excellent vertical stiffness and flexible lateral stiffness. Especially, it has the advantages of simple construction and low cost. Chloroprene rubber, a type of rubber material, has greater resistance to aging than natural rubber, but its performance is also degraded due to various deterioration factors. Although these aging characteristics are not reflected in the seismic design standards and seismic performance evaluation guidelines, it is reasonable to reflect this when related studies are accumulated. For chloroprene rubber, accelerated heat aging test was performed with variables of heating temperatures and exposure time to analyze shear characteristics. As aging progresses the maximum shear stress and shear strain decrease. Also, the shear stiffness is greatly increased at the same shear strain.

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

A Study on the Vibration Analysis of an Automobile Steering System (승용차 스티어링 칼럼 시스템의 진동해석에 관한 연구)

  • 김찬묵;김도연
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.494-503
    • /
    • 1998
  • In this paper, in order to analyze dynamic characteristics of an automobile steering system consisting of many components, natural frequencies and transfer functions of each component and the total system are found on a FFT analyzer by experiments. Then, the data are transmitted to a commercial package program, CADA-PC. By analyzing the data, the mode shape of each natural frequency and damping values are obtained. Also, the function of a rubber coupling in column and telescoping effects on system are considered. C.A.E commercial programs are used to compare with the results of experiments. For the finite element modeling, I-DEAS is used. Data processing and post processing are operated on NASTRAN and XL, respectively. The ball-bearing and the linkage of shaft with column are modeled by spring element. Stiffness is modified from the results of experiments. The results of those show close agreement. In the mode shape of total system, wheel mode is dominant at lower frequency, while the column mode is main mode at higher. The role of rubber coupling in vibration isolation is clear on mode shape. Telescoping function makes natural frequency of column changed.

  • PDF

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.

A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing (적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;배상달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.