• 제목/요약/키워드: natural polymer

Search Result 691, Processing Time 0.028 seconds

Effect of Coagulant Type on the Silica Dispersion and Properties of Functionalized RAFT ESBR Silica Wet Masterbatch

  • Kim, Woong;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • Various studies have been conducted to improve silica dispersion of silica filled tire tread compounds; among them, silica wet masterbatch (WMB) technology is known to be suitable for manufacturing silica filled compounds that have high silica content and high dispersibility. Till now, the WMB study is focused on the natural rubber (NR) or emulsion styrene-butadiene rubber (ESBR) that does not have a silica-affinity functional group, and a study of NR or ESBR having a silica-affinity functional group is still not well known. Unlike the dry masterbatch technology, the WMB technology can solve the problems associated with the high Mooney viscosity when applied to silica-friendly rubber. However, a coagulant suitable for each functional group has not yet been determined. Therefore, in this study, different coagulant applied silica WMB was prepared by applying calcium chloride, sulfuric acid, acetic acid, and propionic acid by using a carboxyl group functionalized reversible addition fragmentation chain transfer ESBR. The evaluation of the WMB compounds revealed that the calcium chloride added WMB compound showed excellent silica dispersion, abrasion resistance, and rolling resistance.

A Study on the Mechanical Properties of Polymer Electrolyte Membrane according to Temperature (온도에 따른 고분자전해질막의 기계적 특성에 관한 연구)

  • EO, JUNWOO;KIM, SEUNGHWAN;SEO, YOUNGJIN;KO, HYUNGJONG;HWANG, CHULMIN;JUNG, YOUNGGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.566-573
    • /
    • 2022
  • In this study, the mechanical properties of the polymer electrolyte membrane according to the temperature were studied. The test specimens of polymer electrolyte membrane were heat treated at 40℃, 60℃, 80℃, 100℃, and 120℃, and then the tensile tests were performed. As results of this study, the residual stress of the polymer electrolyte membrane was removes by the heat treatment and the elastic modulus decreased due to the decrease in internal energy. In addition, in the plastic region, the mechanical properties and crystallization rate of the polymer electrolyte membrane increased in proportion according to increase of the heat treatment temperature.

Green Blends and Composites from Renewable Resources

  • Yu, L.;Petinakis, S.;Dean, K.;Bilyk, A.;Wu, D.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.216-216
    • /
    • 2006
  • A special group of polymers, those from renewable resources, has attracted an increasing amount of attention over the last two decades, due to two major reasons: environmental concerns and the limitations of our finite petroleum resources. Generally, polymers from renewable resources (PFRR) can be classified into three groups: (1) natural polymers, such as starch, protein and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid (PLA); and (3) polymers from microbial fermentation, such as polyhydroxybutyrate (PHB). Like many other petroleum based polymers, various properties of PFRR are also vastly improved through blending and composites formation.

  • PDF

A Theoretical Synthesis of Poly(methyl methacrylate) (PMMA) by the Molecular Orbitals Calculation

  • Kim, Jong-Too;Kim, Ui-Rak;Akira Imamura
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.292-297
    • /
    • 2000
  • The theoretical synthesis of the isotactic and syndiotactic poly(methyl methacrylate) were carried out as a model for real polymerization reactions following the normal chain reaction processes by repeating the uniform localization of wave functions with inclusion of the interaction between the end group of the cluster and an attaching molecule by the elongation method, and then, the calculated value was compared with the usual PM$_3$ calculation. The results revealed that a reaction of cluster with monomer molecules has made it possible to calculate the electronic structure and total energy of polymer with nearly infinite length and a matrix of constant dimension. The isotactic poly(methyl methacrylate) is more stable than syndiotactic one. The same tendency have been found between the experimentally measured properties and a calculated total energy to explain the chain motion in isotatic and syndiotactic poly(methyl methacrylate).

  • PDF

A Manganese Coordination Polymer and a Palladium Molecular Compound of 3-Pyridinepropionic acid (HL): [MnL2(H2O)2] and trans-[Pd(HL)2Cl2]

  • Im, Seo Young;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2947-2952
    • /
    • 2013
  • Three coordination polymers, [$ML_2(H_2O)_2$] (M = Co (1), Ni (2), Mn (3)), were prepared from metal acetates ($M(CH_3COO)_2{\cdot}4H_2O$) and 3-pyridinepropionic acid ($HL=(3-py)-CH_2CH_2COOH$) by solvent-layer methods. By contrast, a discrete molecular compound, trans-[$Pd(HL)_2Cl_2$] (4), was synthesized by replacing benzonitrile (PhCN) ligands in trans-[$Pd(PhCN)_2Cl_2$] with HL under microwave-heating conditions. Compounds 1-3 have a 2D framework, and compound 4 contains a square-planar Pd metal.

Photoreactions of Photofunctional polymer Bearing Acyloxyimino Groups and Its Applications (아실옥사이미노기를 갖는 광기능성고분자의 광반응과 이용)

  • Song, Gyeong-Hyeon
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • In this study, new photosensitive polymers bearing acyloxyimino(AOI) group were prepared and the relationship between photochemical reactions of the polymers and changes of their physical properties was investigated. It was found that main reaction of these copolymers depended on the structure of polymer mainchain. From the view point of amino groups formation, acryl type polymers were superior to methacryl type polymers. On the other hand, in the case of mathacryl type polymers, mainchain scissions and formation of double bonds occurred very effectively. Applications of these copolymers to photofunctional polymers were also discussed.

  • PDF

Influence of Mixing Procedure on Properties of Carbon Black-filled Natural Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.192-198
    • /
    • 2000
  • Cure characteristics and physical properties of carbon black-filled natural rubber (NR) compounds depending on the mixing procedure were studied using the compounds with different pre-final mixing (FM-1) stages. Carbon master batch (MB) and first and second remitting (1RM and 2RM) stages were employed as the FM-1 stage. Bound rubber content of the FM compound decreased with increasing the mixing steps. This was due to the decrease of the molecular weight distribution of the polymer by the rubber chain scission during the mixing. The Mooney viscosity decreased with increasing the mixing steps. Cure characteristics of the compounds were found to be different with the mixing procedures. The cure times of the compound became slower by increasing the number of the mixing steps. This was explained by the length of rubber chain, the carbon black network, distribution of the curatives in the compound, and immobilization of the polymeric segments. Modulus and tensile strength of the vulcanizate did not show a specific trend with the mixing procedure. Fatigue life of the vulcanizate increased by increasing the mixing stages.

  • PDF

Preparation of Shark Byproduct Extract and Gellan Gum based Antibacterial Film Containing Green Tea Extract

  • Bak, Jing-Gi;Kim, Jin;Ohk, Seung-Ho
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • In this study, we tried to examine the possibility of developing a dental product such as tooth decay prevention and oral hygiene by manufacturing a natural polymer film for oral use. Natural polymer films were prepared from shark byproduct extract (SBE) and gellan gum (GG). As an antibacterial substance, the antibacterial activity of green tea extract against tooth decay-causing bacteria was measured. An film was prepared by adding green tea extract to the composition of SBE and GG. The mechanical, solubility, moisture content and antibacterial function of the prepared film were investigated in detail. Also, the incorporation of GTE into the SBE/GG film improved the physical performance of the film. Increasing the content of GTE improved the antioxidant and antibacterial properties of the film. Formulation of antimicrobial SBE/GG film containing green tea extract was established and these results evidently showed potential for cavity prevention products application.

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.