• Title/Summary/Keyword: natural jute fiber

Search Result 28, Processing Time 0.022 seconds

ENGINEERING PROPERTIES OF NATURAL FIBER USED NONWOVEN GEOTEXTILES (천연섬유 부직포 지오텍스타일의 공학적 특성)

  • Jeon, H.Y.;Jang, Y.S.;Lee, K.W.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.267-272
    • /
    • 2008
  • The purpose of this study is to improve the environmental applicability of nonwovens by using special composition. Polypropylene spunbonded and needle punched nonwovens which have the lower cost than polyester nonwovens were used as the raw materials to manufacture the natural fiber used nonwoven geotextiles. These geotextiles were made by use of the thermal bonding methods and composed of jute(or flax)/polypropylene staple fiber blends were obtained in consideration of environmental application. Finally, the engineering properties of natural fiber used nonwoven geotextiles were investigated as eco-friendly materials.

  • PDF

Domestic/overseas Market and Technical Issues of Natural Fiber-reinforced Polymer Composites (자연 섬유 복합재료의 국내외 기술 및 시장 현황)

  • Yi, Jin-Woo;Lee, Jung-Hoon;Hwang, Byung-Sun;Kim, Byung-Sun
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.32-38
    • /
    • 2007
  • Natural fibers can refer to all types of fibres only produced by nature. Their lengths vary from particles to long strands. Natural fibers are categorized roughly by six types, depending on the types of sources; base, leaf, seed, grasses, fruit and wood. Of these fibers, jute, flax, sisal and ramie are the most commonly used as reinforced materials in preparing polymer composites. In development and improvement of these composites, many studies have been implemented to overcome the drawbacks such as incompatibility, moisture problems and so on. The range of industry sectors of natural fiber-reinforced polymer composites becomes more extensive gradually and many of the companies all over the world are engaged in fabrications or applications. This paper mainly discussed the recent status of the domestic/overseas market and research issues of natural fiber-reinforced polymer composites. We made an exception of wood-polymer composites market which have played a great role because they had been often dealt with.

A Study on the Improvement of Discharge Capacity of Natural Fiber Drain (천연마섬유배수재의 통수능력 향상에 관한 연구)

  • 김지용;한상재;강민수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.279-284
    • /
    • 1999
  • Fiber drain(FD), which is made of organic fibers from jute and coir, has recently been used in several construction projects in the Southeast and East Asia region involving the soil improvement of reclamation fills overlying marine clay. FD is an environmentally friendly product that will naturally be biodegraded into soil after the completion of performance duration as a vertical drain. However, the conventional FD has limited and low-ranged discharge capacity compared to PVD. For this, in this study, the improvement of FD was attempted and new shaped FDs were evaluated by laboratory tests. A series of discharge capacity test was performed to investigate the functional applicability for several types of FDs.

  • PDF

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Characteristics of the Natural Fiber Drain Board for Environmentally Friendly Soil Improvement Method (자연친화형 연약지반개량공법을 위한 천연섬유배수재의 특성 연구)

  • Kim, Ju Hyong;Cho, Sam-Deok;Jang, Yeon-Su;Kim, Soo Sam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • The recent environmental protection issue has diminished the supply of sand for soft ground improvements so much that the prices of sand have shown a sudden rise. Plastic material is one of substitutes for sand material, but plastic is nonperishable and doubtable if it has potential environmental hormone disrupting substances. Moderate-priced natural fiber drain board made with coconut coir and jute filter are in the spotlight recently as an alternative material for sand and plastic drain board etc. Natural fiber drain has not only competitive price but also a characteristic of assimilation into the soils after finishing of its own function. Discharge capacity of the fiber drain board evaluated by triaxial type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of the fiber drain board and the plastic drain board which were installed in the clayey soil during the composite discharge capacity test were almost similar. It was also found that biodegradation of the fiber drain board was in progress until 18 month after installation in the clayey soil, but they had still enough engineering properties to use at field.

Research on the development of the properties of PLA composites for automotive interior parts (자동차 내장재 적용을 위한 PLA 복합재료의 물성개선에 관한 연구)

  • Jung, Jae-Won;Kim, Seong-Ho;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid(PLA) is a promising candidate for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. In this study natural fibers were (jute fiber was) introduced as reinforcements in order to improve heat resistance and impact strength of PLA. Especially for improving the adhesion between PLA and jute, various surface treatments were tried. With each treatment, we verified that the impact strength of composite was improved. With annealing treatment, we found a remarkable increase of heat resistance of PLA composite.

A Textile Analysis of Woolen Carpet Excavated from Seongjeonggak Hall, in Changdeokgung Palace (창덕궁 성정각 출토 모담(毛毯) 직물 분석)

  • Pak, Seonghee;Lee, Ryangmi;An, Boyeon;Cho, Misook
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.120-134
    • /
    • 2021
  • A Woolen carpet from the late Joseon Dynasty was unearthed in the process of repairing Seongjeonggak in Changdeokgung. Since relics are rarer than documentary records, the woolen carpet is highly valued as a relics. It is presumed to have been woven in the late 19th or early 20th century because there is a record of repairing Seongjeonggak in 1907. In the carpet, a pattern is made by inserting colored yarn dyed yellow and red onto a reddish-purple ground weave. The selvage of the woolen carpet used cotton thread, and jute is used for the warp and weft of the ground weave. The colored patterns is made of wool in the form of loop pile. Cut piles may appear occasionally when the colored yarn changes, but are almost invisible from the surface because they are pressed tightly with a shuttered weft. Making carpets with jute and wool is thought to be influenced by the Brussels carpets of the mid-18th century. Furthermore, the woolen carpet is torn and the pattern is completely unclear; however, it is understandable that the pattern is partially repeated. Microscopic and Fourier transform-Infrared spectrometer(FT-IR) analyses were performed for the above investigation. To identify the dyes used in relics, we compared them with natural dyed fabric samples based on chromaticity measurements and Ultraviolet/Visible spectrophotometer(UV-Vis) analysis. These analyses revealed that the woolen carpet's dyed green yarn did not use indigo, and reddish-purple ground weave is estimated to have used Caesalpinia sappan.

An Experimental Study on the Engineering Properties of Fiber Reinforced Concrete using Kenaf Fibers (양마섬유를 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Jun, Woo-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • This study is to examine experimentally on the engineering properties of fiber reinforced concrete using kenaf(KN) fiber and another organic fibers for comparing test, and propose the usable method of KN fiber as an natural fiber in the concrete industry. It is to select 4 contents(0, 0.3, 0.6 and $0.9kg/m^3$) of KN fiber and 4 organic fibers (Jute, Cellulose, Polypropylene and Nylon). For this study, it is to perform various tests including slump, air content, plastic and drying shrinkage, flexural and tensile strength, carbonation depth for the fiber reinforced concrete according to contents of KN fiber and 4 organic fibers. The results of this study are as follows : In case of KN fiber contents $0.6kg/m^3$, it shows the effective results from increasing concrete strength including flexural and tensile, from decreasing plastic and drying shrinkage, carbonation depth. Also KN fiber is confirmed having excellent performances by comparing with test results of another organic fibers as same contents $0.6kg/m^3$. Therefore, considering concrete test results, cost and environment, KN fiber is proposed as the optimum contents in the range of $0.6kg/m^3$ and an effective fiber materials, and needs to keep up these study on the site application.