• Title/Summary/Keyword: natural gas leak

Search Result 38, Processing Time 0.026 seconds

Linear interpolation and Machine Learning Methods for Gas Leakage Prediction Base on Multi-source Data Integration (다중소스 데이터 융합 기반의 가스 누출 예측을 위한 선형 보간 및 머신러닝 기법)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.33-41
    • /
    • 2022
  • In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.

Development of Methane Gas Leak Detector by Short Infrared Laser (단적외선 레이저를 이용한 메탄가스 누출 검지 장비 개발)

  • Young Sam Baek;Jung Wan Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • Due to the development of industry and improvement of living standards, the amount of natural gas used in the world is constantly increasing, and related industrial facilities such as power plants, storage facilities, and supply pipelines are constantly increasing. Natural gas is a convenient and clean fuel that does not pollute the environment, but in the event of an accident due to leakage, it can cause human casualties, large-scale property damage, and negative effects on the global warming effect. In addition to the severe penalties under the Severe Disaster Punishment Act, it is necessary to ensure safety. Therefore, by applying the principle of laser-based absorption spectroscopy, we developed a long-range portable methane leakage gas detection system that can detect the concentration of methane leaking from a distance of up to 30 meters and verified its effectiveness.

A study on the mechanical performance of impregnated polymer foam in cargo leakage of LNG carrier (LNG운반선의 화물 누출 시 함침된 고분자 폼의 기계적 성능에 관한 연구)

  • Park, Gi-Beom;Kim, Tae-Wook;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, the effect of cryogenic liquefied natural gas leakage and loading on liquefied natural gas cargo hold is investigated to observe the performance of the polymer foam material that comprises the cryogenic insulation of the cargo hold. The primary barriers of liquefied natural gas carrier that are in contact with the liquefied natural gas will leak if damage is accumulated, owing to fluid impact loads or liquefied natural gas loading / unloading over a long period. The leakage of the cryogenic fluid affects the interior of the polymer foam, which is a porous closed cell structure, and causes a change in behavior with respect to the working load. In this study, mechanical properties of polyisocyanurate foam specimen, which is a polymer material used as insulation, are evaluated. The performance of the specimens, owing to the cold brittleness and the impregnation effects of the cryogenic fluids, are quantitatively compared and analyzed.

Water Tightness around Under-ground Oil Storage Cavern (지하유류비축공동(地下油類備蓄空洞)의 수밀성(水密性)에 관한 연구(硏究))

  • Chung, Hyung Sik;Sun, Yong;Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.33-38
    • /
    • 1982
  • A successful operation of underground oil storage cavern depends on water-tightness around cavern by groundwater. If water-tightness is not secured, gas bubbles would leak out and oil would migrate to an adjacent empty cavern. In this research an electrical analogy method was employed to study the influence of shape of cavern on gas leakage and the required natural groundwater level, relative oil level in two neighboring caverns and cavern spacing to prevent oil migration. The results show that gas leakage is prevented from a cavern with a ceiling of large curvature. The required values of factors to curtail the migration of oil are given on a graph.

  • PDF

A Study on the Quantitative Process Facility Standards that Require H2S Toxic Gas Detectors and Location Selection for Emergency Safety (H2S 독성가스감지기가 필요한 정량적 공정설비 기준 및 비상시 안전을 위한 위치선정 방안에 대한 연구)

  • Choi, Jae-Young;Kwon, Jung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Design techniques for minimizing the damage caused by leakage of $H_2S$ gas, contained in natural gas and petroleum, have been widely studied abroad in chemical plants that purify and process natural gas and petroleum. However, there is no domestic engineering practice and regulation of $H_2S$. In accordance with the circumstances, this study proposes the quantitative criteria of process equipment to install $H_2S$ toxic gas detector as 500 ppm and explains the valid basis. The $H_2S$ gas dispersion radius up to IDLH 100 ppm is calculated by ALOHA under previous $H_2S$ gas leak accident scenario. The weather conditions of modeling include the conditions of Ulsan, Yeosu and Daesan, the three major petrochemical complexes in Korea. The long radius up to 100 ppm was derived in order of Ulsan, Daesan, Yeosu. For emergency safety the dispersion radius up to 100 ppm of the $H_2S$ gas obtained in this study should be extended to apply the additional $H_2S$ toxic gas detector, and local climate conditions should be considered.

A Study on Explosion Risk Management for Hot Oil Heater (열매체 가열기 설비에서의 폭발위험관리에 관한 연구)

  • Jang, Chul;Kwon, Jin-Wook;Hwang, Myoung-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

Numerical Model of Heat Diffusion and Evaporation by LNG Leakage at Membrane Insulation (LNG 화물창 방열재 균열에 따른 액화천연가스의 확산 및 온도 예측을 위한 수치 모델)

  • Lee, Jang Hyun;Kim, YoonJo;Hwang, Se Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • The leakage of cryogenic LNG through cracks in the insulation membrane of an LNG carrier causes the hull structure to experience a cold spot as a result of the heat transfer from the LNG. The hull structure will become brittle at this cold spot and the evaporated natural gas may potentially lead to a hazard because of its flammability. This paper presents a computational model for the LNG flow and heat diffusion in an LNG insulation panel subject to leakage. The temperature distribution in the insulation panel and the speed of gas diffusion through it are simulated to assess the safety level of an LNG carrier subject that experiences a leak. The behavior of the leaked LNG is modeled using a multiphase flow that considers the mixture of liquid and gas. The simulation model considers the phase change of the LNG, gas-liquid multiphase interactions in the porous media, and accompanying rates of heat transfer. It is assumed that the NO96-GW membrane storage is composed of glass wool and plywood for the numerical simulation. In the numerical simulation, the seepage, heat diffusion, and evaporation of the LNG are investigated. It is found that the diffusion speed of the leakage is very high to accelerate the evaporation of the LNG.

Serviceability Assessment of Corroded Subsea Crude Oil Pipelines (부식된 해저 원유 파이프라인의 사용적합성 평가)

  • Cui, Yushi;Kim, Dong Woo;Seo, Jung Kwan;Ha, Yeon Chul;Kim, Bong Ju;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • Pipelines are one of the most important structures in subsea equipment. It is the main equipment for transportation of crude oil and natural gas to the downstream facilities. Crude oil and natural gas leak will be carry out not only political and financial issues but also pollution to the environment. Inaccurate predictions of corrosion behavior will make hazardous consequences. The serviceability assessment of corroded structures is essential especially for subsea pipelines. As corrosion is concerned, the effects of failure due to significant reduction will make it hard to the pipeline operator to maintain the serviceability of pipelines. In this paper, the serviceability assessment of corroded crude oil pipeline is performed using the industry design code (Shell92, DNV RP F101, ASME B31G, BS 7910, PCORRC) and FEA depending on corrosion area. In last step, the future integrity of the subsea crude oil pipeline is assessed to predict the remaining year in service of crude oil pipelines.

Development of Wireless Communication Based Operation State Monitoring System for Open Rack Vaporizer (무선 통신 기반 해수식 기화기 운영 상태 모니터링 시스템 개발)

  • Yoo, Seung-Yeol;Joen, Ming-Sung;Lee, Jae-Chul;Kang, Dong-Hoon;Kim, Dong-Goen;Lee, Soon-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.280-287
    • /
    • 2022
  • An open rack vaporizer is a facility that vaporizes liquefied natural gas using sea water. When a vaporization efficiency of the open rack vaporizer decreases, liquefied natural gas can leak, which can cause great damage to the facility. Operators have to monitor the operation state of the facility in real-time to prevent the accident. However, operators have visited the site and have checked the state by looking at the value of sensors installed in the open rack vaporizer through indicators. For the safe operation of the open rack vaporizer, a monitoring system is needed to monitor the operation state of the open rack vaporizer in real-time without the need for operators to visit the site. In this paper, we developed a long term evolution based monitoring system to monitor the operation state of the open rack vaporizer. The developed system can monitor the real-time operation state of the open rack vaporizer at a control center far from the facility. For the system development, data transmission infrastructure using long term evolution was built. Afterwards a software was developed to monitor the operation state of the open rack vaporizer in real-time using the transmitted data. Finally, performance evaluation was conducted to confirm that the developed system operated successfully without data transmission delay or data missing.