• 제목/요약/키워드: natural gas industry

검색결과 169건 처리시간 0.03초

Laser methane detector-based quantification of methane emissions from indoor-fed Fogera dairy cows

  • Kobayashi, Nobuyuki;Hou, Fujiang;Tsunekawa, Atsushi;Yan, Tianhai;Tegegne, Firew;Tassew, Asaminew;Mekuriaw, Yeshambel;Mekuriaw, Shigdaf;Hunegnaw, Beyadglign;Mekonnen, Wondimeneh;Ichinohe, Toshiyoshi
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1415-1424
    • /
    • 2021
  • Objective: Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. We validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. Methods: First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. From the results of the validation, we constructed an estimation equation to determine CH4 emissions from LMD CH4 concentrations. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h/d (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Results: The exhaled CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). The estimation equation used to determine CH4 emissions (y, mg/min) from LMD CH4 concentrations (x, ppm m) was y = 0.4259x+38.61. Daily CH4 emissions of Fogera cows estimated by using the equation did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. Conclusion: These findings demonstrate the potential of using LMDs to valuate feeding regimens rapidly and economically for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration.

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • 유통과학연구
    • /
    • 제10권7호
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

GMA 위보기 및 수직자세 초층용접 최적조건 선정에 관한 실험적 연구 (A Experiment Study on Selection the Optimal Condition for GMA Root-pass Welding in Overhead and Vertical Position)

  • 김지선;김인주;김일수
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.42-48
    • /
    • 2012
  • Due to increase in demand of stable and long pipelines in natural gas industry, wide range of researches are being performed on automation welding to improved welding quality with respect to weld process parameters in real time measurement. In particular, the coupling between the pipe manufacturing process and location of the weld seam, the measured size of the gap that exists in the weld position and the weld angle depending on whether the movement of molten weld. This is due to absence of controlling welding penetration position, depending on the required size of the angle of the setting. In addition, the optimum welding conditions must be considered while selecting, the correlation between these variables and the systematic correlation has not yet been identified. Therefore, in most welded pipe root-pass weld solely depends on the experience of workers in relation to secure a stable weld quality. In this study, automation welding system is implemented to select a suitable root-pass STT (Surface Tension Transfer) welding method using the optimal welding conditions. To successfully accomplish this objective, there were various welding conditions used for welding experiment to confirm that the assessment required for construction through the pipe and automatic welding process is proposed to optimize this plan.

수압파쇄 설계를 위한 수치해석기법의 증명 -해석식과의 비교를 중심으로 - (Verification of Numerical Technique for Hydraulic Fracturing Stimulation - by Comparison with Analytical Solutions -)

  • 심영종
    • 한국지반환경공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.65-71
    • /
    • 2009
  • 수압파쇄기술은 가스나 석유, 지열 등 자원추출을 하기 위해 다양한 분야에서 전세계적으로 응용되고 있는 기술이다. 이러한 수압파쇄 작업 시 복수의 균열이 필수적으로 발생하여 균열간 기계적인 상호작용을 유발하는데 이러한 상호작용은 수압파쇄시 얻어질 수 있는 결과(균열 폭, 균열 길이, 보어홀 내 압력)에 큰 영향을 끼치게 된다. 수치해석기법인 경계병치법은 이러한 균열간의 역학적 상호작용을 고려하는데 유효한 수치해석적 기법으로 개발이 되고 있으나 응력확대계수를 계산하는 해석식과의 비교 등을 통한 검증이 필요하다. 이를 위해 무한평면에 일축 인장 응력과 전단응력이 작용하는 단일균열의 경우 및 임의의 두 균열이 존재하는 경우의 응력확대계수 및 균열폭 해석식과 본 수치해석기법을 통해 얻은 값을 비교하였다. 그 결과, 본 연구에서 제시한 경계병치법은 해석식과 상당히 근접한 결과를 나타내어, 균열간의 기계적인 상호작용을 고려하는데 유효함을 검증하였으며, 추후 수압파쇄 시 설계에 필요한 균열폭 등의 변수를 계산하는데 사용할 수 있음을 나타내었다.

  • PDF

마늘과 향신료 첨가가 난황과 감람유 유화의 관능적 특성 (Effective of Extract Garlic, Spices of Emulsified with Egg-Yolk & Olive Oil)

  • 장혁래
    • 한국관광식음료학회:학술대회논문집
    • /
    • 한국관광식음료학회 2002년도 학술논문발표회
    • /
    • pp.112-122
    • /
    • 2002
  • 본 연구는 Egg yolk을 저온 세균(62.5$^{\circ}C$에서 4분)과 고온 세균(95$^{\circ}C$에서 30초) 하여 7$0^{\circ}C$-75$^{\circ}C$ Double bath pen에서 Hot sabayon cream으로 하여 Hot Clarified Olive oil을 서서히 첨가하며 Emulsify하여 유화한 다음 Extract spices 첨가하여 유화제품의 색도 차이를 분석하여 품질을 평가하였으며, 제조된 유화난황의 관능검사를 실시하였다. Extract spices는 A군과 B.군으로 하였으며, A.군은 Garlic을 제외한 Extract였고 B.군은 Garlic을 첨가하였다. 결과는 Figure 1-5.과 같이 나타났다. \circled1 Sabayon Cream 관능검사 결과는 노랑자위 향이 감소 되었다. \circled2 Clarified Olive 관능검사 결과는 olive oily 향이 감소되고 고소한 맛이 났다. \circled3 Sabayon과 Clarified olive oil과의 Emulsified 관능검사 결과는 부드러워 졌다. \circled4 Extract Spices A.시료의 Hot Emulsified 관능검사 결과는 oily 하였다. \circled5 Extract Spices B.시료의 Hot Emulsified 관능검사 결과는 마늘의 향이 전체적 향을 부드럽게 하였으며, 전체적인 맛은 결정적으로 우수하였다. 즉 마늘 향이 첨가된 B시료가 효과와 특성이 있었다.

  • PDF

A study on the developments of STCW training of seafarers on ships applying in the IGF Code

  • Han, Se-Hyun;Lee, Young-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권10호
    • /
    • pp.1054-1061
    • /
    • 2015
  • The International Maritime Organization (IMO) has been regulating emissions by making mandatory the compliance with institutions aimed at protecting air quality such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP) and Tier III. Under the circumstances, one of the response measures considered to be the most feasible is the replacement of existing marine fuel with Liquefied Natural Gas (LNG). The industry has been preemptively building infrastructure and developing and spreading engine technology to enable the use of LNG-fueled ships. The IMO, in turn, recently adopted the International Code of Safety for Ships Using Gases or Other Low-Flash-Point Fuels (IGF Code) as an institutional measure. Thus, it is required to comply with regulations on safety-related design and systems focused on response against potential risk for LNG-fueled ships, in which low-flash-point fuel is handled in the engine room. Especially, the Standards of Training, Certification and Watchkeeping (STCW) Convention was amended accordingly. It has adopted the qualification and training requirements for seafarers who are to provide service aboard ships subject to the IGF Code exemplified by LNG-fueled ships. The expansion in the use of LNG-fueled ships and relevant facilities in fact is expected to increase demand for talents. Thus, the time is ripe to develop methods to set up appropriate STCW training courses for seafarers who board ships subject to the IGF Code. In this study, the STCW Convention and existing STCW training courses applied to seafarers offering service aboard ships subject to the IGF Code are reviewed. The results were reflected to propose ways to design new STCW training courses needed for ships subject to the IGF Code and to identify and improve insufficiencies of the STCW Convention in relation to the IGF Code.

Chemical Composition and Biological Activities of Essential Oils Extracted from Korean Endemic Citrus Species

  • Baik, Jong-Seok;Kim, Sang-Suk;Lee, Jung-A;Oh, Tae-Heon;Kim, Ji-Young;Lee, Nam-Ho;Hyun, Chang-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.74-79
    • /
    • 2008
  • The aim of this study was to analyze the chemical composition of 14 kinds of citrus oils and to test their biological activities. Citrus essential oils were obtained by steam distillation from immature fruits collected from Jeju Island and were analyzed using gas chromatograph (GC)-flame ionization detectors (FID) and GC-MS. Limonene (55.4% to 91.7%), myrcene (2.1% to 32.1%), ${\alpha}$-pinene (0.6% to 1.6%) and linalool (0.4% to 6.9%) were the major components in most citrus species. To evaluate in vitro antibacterial activity, all essential oils were tested against Propionibacterium acnes and Staphylococcus epidermidis. Nine out of fourteen citrus oils exhibited antibacterial activity against P. acnes, but not against S. epidermidis. The effects of the citrus oils on DPPH radical scavenging, superoxide radical anion scavenging, nitric oxide radical, and cytotoxicity were also assessed. Three essential citrus oils, Joadeung, Dongjunggyul, and Bujiwha, exhibited potent inhibitory effects on nitric oxide production. Two essential oils, Dongjunggyul and Joadeung, showed potent free radical scavenging activities in the DPPH assay. For future applications in cosmetic products, we also performed MTT assays in a human dermal fibroblast cell line. The majority of the essential oils showed no cytotoxicity. The results indicate that citrus essential oils can be useful natural agents for cosmetic application.

기후변화에 대응한 농업생명공학의 기회와 도전 (Agricultural biotechnology: Opportunities and challenges associated with climate change)

  • 장안철;최지영;이신우;김동헌;배신철
    • Journal of Plant Biotechnology
    • /
    • 제38권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.

원자력발전소(原子力發電所) 가동중(稼動中) 검사(檢査)의 시험분석(試驗分析)을 위한 자동화연구(自動化硏究) (I) (A Study of Automation for Examination Analysis of Inservice Inspection for Nuclear Power Plant (I))

  • 김욱
    • 비파괴검사학회지
    • /
    • 제5권1호
    • /
    • pp.34-47
    • /
    • 1985
  • The developing country, KOREA where does not possess the natural resources for traditional energy such as oil and gas, so. The nuclear energy is the most single reliable source available for closing the energy gap. For these reason, It is inavoidable to construct the nuclear power plant and to develop technology related nuclear energy. The rate of operation in large nuclear power facilities depends upon the performance of work system through design and construction, and also the applied technology. Especially, it is the most important element that safety and reliability in operation of nuclear power plant. In view of this aspects, Nuclear power plant is performed severe examinations during preservice and inservice inspection. This study provide an automation of analysis for volumetric examination which is required to nuclear power plant components. It is composed as follows: I. Introduction II. Inservice Inspection of Nuclear Power Plant ${\ast}$ General Requirement. ${\ast}$ Principle and Methods of Ultrasonic Test. ${\ast}$ Study of Flaw Evaluation and Design of Classifying Formula for Flaws. III. Design of Automation for Flaw Evaluation. IV. An Example V. Conclusion In this theory, It is classifying the flaws, the formula of classifying flaws and the design of automation that is the main important point. As motioned the above, Owing to such as automatic design, more time could be allocated to practical test than that of evaluation of defects, Protecting against subjective bias tester by himself and miscalculation by dint of various process of computation. For the more, adopting this method would be used to more retaining for many test data and comparative evaluating during successive inspection intervals. Inspite of limitation for testing method and required application to test components, it provide useful application to flow evaluation for volumetric examination. Owing to the characteristics of nuclear power plant that is highly skill intensive industry and has huze system, the more notice should be concentrated as follows. Establishing rational operation plan, developing various technology, and making the newly designed system for undeveloped sector.

  • PDF

고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상 (Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement)

  • 백병훈;한천구
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.193-199
    • /
    • 2015
  • 최근, 콘크리트 산업에서는 $CO_2$ 배출량감소등 환경문제와 함께 부존자원의 고갈대책도 중요한 문제점으로 제기되어, 이를 동시에 해결하기 위하여 각종 산업부산물이나 산업폐기물을 콘크리트용 자원으로 재이용하는 방법이 연구되고 있다. 본 연구는 고로슬래그 미분말(BS)과 순환잔골재(RFA) 혼합 모르타르를 기반으로 하여 BS의 잠재수경성 반응을 탈황석고(FGD)와 보통포틀랜드 시멘트(OPC)의 자극반응으로 추가 활성화시킴으로써 일반 강도영역까지의 모르타르 활용성을 검토하고자 하였다. 결과적으로, BS에 FGD 10%, OPC 30%를 치환하고 RFA를 사용할 경우 OPC만을 사용하는 플레인 모르타르의 80%정도인 보통강도모르타르가 발휘되었지만 실용적인 측면에서 유동성적으로 플로치를 동일하게 유지하는 물-결합재를 낮춰 주게 된다면 더욱 플레인 강도영역에 근접할 수 있을 것으로 사료된다.