• Title/Summary/Keyword: natural frequency of a plate

Search Result 344, Processing Time 0.04 seconds

Parameter Analysis and Modeling of Walking Loads (보행하중의 매개변수 분석 및 모형화)

  • 이동근;김기철;최균효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.459-466
    • /
    • 2001
  • The floor vibration aspect for building structures which are in need of large open space are influenced by the interrelation between natural frequency and working loads. Structures with a long span and low natural frequency have a higher possibility of experiencing excessive vibration induced by dynamic excitation such as human activities. These excessive vibrations make the residents uncomfortable and the serviceability deterioration. Need formulation of loads data through actual measurement to apply walking loads that is form of dynamic load in structure analysis. The loads induced by human activities were classified into two types. First type is in place loads. the other type is moving loads. A series of laboratories experiments had been conducted to study the dynamic loads induced by human activities. The earlier works were mainly concerned to parameters study of dynamic loads. In this Paper, the walking loads have been directly measured by using the measuring plate in which two load cells were placed, the parameters, the load-time history of walking loads, and the dynamic load factors have been analyzed. Moreover, the shape of the harmonic loads which were gotten by decomposition the walking loads have been analyzed , and the walking loads modeling have been carried out by composition these harmonic loads derived by functional relation.

  • PDF

Analysis of Thermal Response of Rectangular Plates Made of Functionally Graded Materials (경사.기능재료 사각평판의 열적거동 해석)

  • 민준식;강호식;정남희;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.78-84
    • /
    • 2004
  • In this paper, a study of thermal response of two types of functionally graded materials (FCM) plates composed of $\textrm{Al}_2\textrm{O}_3$ and Ti-6Al-4V is presented. The material properties of the functionally graded plates are assumed to vary continuously through the thickness of the plate according to a power law distribution of the volume fraction of the constituents. It is supposed that the top and bottom surfaces of the plate are heated and kept as constant thermal boundary conditions. The fundamental equations for rectangular plates of FGM are obtained using Hamilton's variational principles. The solution is obtained in terms of Navier Solution. The influence of volume fraction and temperature is studied on the static deflection and natural frequency of FCM plate.

An Experimental Study on Vibration Characteristics of Automotive Roof with Passive Constrained Layer Damping (수동구속감쇠층을 갖는 자동차루프의 진동특성에 대향 실험적 연구)

  • 이정균;김찬묵;강영규;사종성;홍성규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.613-617
    • /
    • 2004
  • This paper presents an experimental study on vibration characteristics of an automotive roof with viscoelastic material. The goal of the study is to extract modal parameters (natural frequency, loss factor, and mode shape) of automotive roof with unconstrained and constrained layer damping treatment. To determine the effective position of the viscoelastic patch on a roof, vibration tests have been carried out for two cases; Aluminum plate with viscoelastic patch on maximum strain energy, and aluminum plate with viscoelastic patch on nodal line. From the result of aluminum plate, it is found that the viscoelastic patch should be attached on the Place with maximum strain energy Part. For the automotive root five Patches of unconstrained or constrained viscoelastic material have been attached on the position of maximum strain energy. This paper addresses that the proper position of viscoelastic patch is very important and the concept of maximum strain energy may be a good criterion f3r the placement of viscoelastic patch.

  • PDF

Fluid Bounding Effect on Natural Frequencies of Fluid-Coupled Circular Plates

  • Jhung, Myung-Jo;Park, Young-Hwan;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1297-1315
    • /
    • 2003
  • This study deals with the free vibration of two identical circular plates coupled with a bounded or unbounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element analysis using commercial program with a good accuracy The case of bounded or unbounded fluid is studied for the effect on the vibration characteristics of two circular plates. Also, the effect of gap between the plates on the fluid-coupled natural frequencies is investigated.

Vibration Analysis of Rotating Composite Cantilever Plates

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.320-326
    • /
    • 2002
  • A modeling method for the vibration analysis of rotating composite cantilever plates is presented in this paper. The coupling effects between inplane motions and the bending motion are considered and explicit mass and stiffness matrices are derived for the modal analysis. Numerical results are obtained and some of them are compared to those of a commercial program to confirm the accuracy of the present method. Numerical results show that the coupling effects become important only when laminates are stacked up unsymmetrically. Incidentally, natural frequencies loci veering, loci crossing, and associated mode shape variations are observed.

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Effect of Water Level on the Hydroelastic Vibration of Two Rectangular Plates Coupled with Water (물로연성된 두 직사각평판의 접수진동에 대한 수위의 영향)

  • Yoo, Gye-Hyoung;Kwon, Tae-Kyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.839-844
    • /
    • 2003
  • The effect of water level on the free vibration of a partially water-filled two rectangular plates structure was investigated by experimental modal analysis and finite element analysis using ANSYS computer program. Modal parameters of two rectangular plates coupled with water were obtained by means of experiment and the FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of water level and water gap size on the fluid-coupled natural frequency were investigated. It was found that the natural frequency of the partially water-filled two rectangular plates are not proportional to the water level, but depend on mode number of plates.

  • PDF

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF