• Title/Summary/Keyword: natural frequency of a plate

Search Result 344, Processing Time 0.052 seconds

Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function (주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정)

  • 박용화;정완섭;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Impact of Measurement Temperature on Frequency-Based Damage Detection Method (계측온도조건이 고유진동수 기반 손상검색기법에 미치는 영향)

  • 김정태;윤정방;이진학;류연선;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.535-540
    • /
    • 2003
  • The objective of this paper is to assess the variability of modal properties caused by temperature effects and to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-based method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

Stability Analysis of Rectangular Plate with Concentrated Mass (집중질량을 갖는 장방형판의 안정해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.805-809
    • /
    • 2004
  • This paper is for the vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. The vibration of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with Concentrated Mass are calculated A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analysis plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as WFP1 and WFP2 respectively. The value of WFP1 and WFP2 can be changed as 10, 10$^3$ and the value of SFP(shear foundation parameter) also be changed 5, 15 respectively.

  • PDF

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

A Study on the Free Vibration of a Square Plate with Various Hole Positions (사각평판에서 구멍의 위치에 따른 자유진동에 관한 연구)

  • 김형준;최경호;박정호;김현수;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.753-756
    • /
    • 2002
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis far each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary for the basic design information.

  • PDF

A Study on the Free Vibration of a Square Plate with Various Hole Position (사각평판에서 홀의 위치에 따른 자유진동에 관한 연구)

  • 김현수;안찬우;최경호;김동영;김형준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.132-139
    • /
    • 2003
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis for each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends clamped support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary fur the basic design information.

New Formulation of MNDIF Method for Extracting Accurate Natural Frequencies of Plates (평판의 고정밀도 고유진동수 추출을 위한 개선된 MNDIF법 정식 개발)

  • Kang, Sang-Wook;Yoon, Juil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.725-733
    • /
    • 2013
  • An improved formulation of the MNDIF method is introduced to extract highly accurate natural frequencies of concave plates with arbitrary shape. Originally, the MNDIF method cannot yield accurate natural frequencies for concave plates. It can be applicable to only convex plates. To overcome this weak point, a new approach of dividing a concave plate into two convex domains and applying the MNDIF method to each domain is proposed and the validity and accuracy are shown in verification examples.

Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading

  • Hegde, A.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.405-422
    • /
    • 2016
  • The paper deals with the results of the laboratory cyclic plate load tests performed on the reinforced soft clay beds. The performances of the clay bed reinforced with geocells and geocells with additional basal geogrid cases are compared with the performance of the unreinforced clay beds. From the cyclic plate load test results, the coefficient of elastic uniform compression ($C_u$) was calculated for the different cases. The $C_u$ value was found to increase in the presence of geocell reinforcement. The maximum increase in the $C_u$ value was observed in the case of the clay bed reinforced with the combination of geocell and geogrid. In addition, 3 times increase in the strain modulus, 10 times increase in the bearing capacity, 8 times increase in the stiffness and 90% reduction in the settlement was observed in the presence of the geocell and geogrid. Based on the laboratory test results, a hypothetical case of a prototype foundation subjected to cyclic load was analyzed. The results revealed that the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92% in the presence of the geocells and the geogrids.

Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique

  • Rajasekaran, Sundaramoorthy;Wilson, Antony John
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.269-294
    • /
    • 2013
  • This paper is concerned with the determination of exact buckling loads and vibration frequencies of variable thickness isotropic plates using well known finite difference technique. The plates are subjected to uni, biaxial compression and shear loadings and various combinations of boundary conditions are considered. The buckling load is found out as the in plane load that makes the determinant of the stiffness matrix equal to zero and the natural frequencies are found out by carrying out eigenvalue analysis of stiffness and mass matrices. New and exact results are given for many cases and the results are in close agreement with the published results. In this paper, like finite element method, finite difference method is applied in a very simple manner and the application of boundary conditions is also automatic.

Analysis of Steel Bridge by means of Specially Orthotropic Plate Theory (특별직교이방성 판이론을 응용한 강교량의 해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams ar H-type. A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The results of application of this method to steel bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffiness on the natural frequency is rigorously investigated. According to numerical examination given in this paper the result by the plate theory is 2.43 times stiffer than of beam theory.

  • PDF