• Title/Summary/Keyword: natural fermentation

Search Result 532, Processing Time 0.029 seconds

Changes in Quality of according to Fermentation Time of Fermented Soybean Produced Made with Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로 제조한 콩 발효물의 발효시간에 따른 품질 변화)

  • Shin, Dong Sun;Choi, In Duck;Park, Ji Young;Kim, Nam Geol;Lee, Seuk Ki;Jeong, Kwang-Ho;Park, Chang Hwan;Choi, Hye Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.4
    • /
    • pp.381-389
    • /
    • 2020
  • The purpose of this study was to evaluate the appearance, physicochemical, physical, and fermentation properties of the fermented soybean produced by manufacturing with inoculation the different types of microbial strains. The strains were inoculated by the NSI (natural strains inoculation), and the SSI (selective strain inoculation) were treatments. The appearance showed differences in color, viscous substance, and hardness depending on strains inoculation and fermentation duration. The pH, and total acidity were 6.40~7.26%, and 0.10~0.39% respectively with differences depending on the samples. The moisture content as the fermentation duration increased, the NSI (56.03~57.66%) decreased and the SSI (56.71~58.63%) increased. The physical characteristics of the hardness increased as the fermentation duration increased for the NSI and the SSI decreased. The color values for the L, a, and b values were 47.64~58.56, 7.15~9.08, and 12.41~17.30, respectively. The α-amylase and protease activities of the SSI were the highest among all treatments. The total viable cell counts of the fermented soybean products by strains were 5.02 to 9.77 log CFU/g, and SSI (fermentation, 48 hours) was the highest. The amino-type nitrogen contents of all samples were 301.62~746.97 mg% and the SSI showed the highest content. The amino acid had the highest glutamic acid content.

Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria (Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효)

  • Shim, Young-Sup;Kim, Jae-Won;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.161-167
    • /
    • 1998
  • Whey is by-product from natural cheese manufacturing process. For alcoholic fermentation, the initial lactose content and pH were adjusted to 4.5% and 4.2, respectively. Two strains of yeasts (Kluyveromyces marxianus, Saccharomyces cerevisiae) and seven strains of lactic acid bacteria (Lactobacillus brevis, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus lactis, Leuconostoc cremoris, Lactococcus lactis and Streptococcus thermophilus) were examined for their alcohol production and sensory acceptability. Ethanol content in the whey fermented by lactose-fermenting K. marxianus was 2.8% at 4th day of incubation and that fermented by nonlactose fermenting S. cerevisiae was 0.2%. In case of mixed fermentation with yeasts and tactic acid bacteria (LAB being inoculated at 0 hr), the maximum ethanol production was obtained in the sample inoculated at 16 hr by s. cerevisiae, and in the sample inoculated at 24 hr by K. marxianus. The optimum temperature was $37^{\circ}C$ for alcohol production under static condition. The production of $CO_2$ gas was higher in the whey fermented by K. marxianus (1.88%) than by S. cerevisiae (0.04%). The titratable acidity of the whey gradually increased with fermentation time and its content was 0.39% at 4th day of fermentation by K. marxianus and 0.52% by S. cerevisiae. Among seven strain of latic acid bacteria tested, Lactococcus lactis exerted synergistic effect for acid production with K. marxianus. Therefore, overall results suggestd that the combination of Lactococcus lactis and K. marxianus was best choice in fermenting cheese whey for edible purpose.

  • PDF

Storage-life and Palatability Extension of Betula platyphylla Sap Using Lactic Acid Bacteria Fermentation (유산균 발효를 이용한 자작나무 수액의 저장성 및 기호성 증진 기술)

  • Kim, Jong-Ho;Lee, Woon-Jong;Cho, Youn-Won;Kim, Kwang-Yup
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.787-794
    • /
    • 2009
  • In this study, a new method for extending storage-life and palatability of Betula platyphylla sap by applying lactic acid bacteria fermentation was developed. The fluids of saps were filtered through 0.22 ${\mu}m$ membrane filter and each fermented by 8 different lactic acid bacteria which are Lactobacillus acidophilus, Lactobacillus brevis, Leuconostoc mesenteroides, Leuconostoc lactis, Lactococcus lactis, Pediocossus pentosaceus, Pediococcus dextrinicus, Streptococcus thermophilus. All the tested lactic acid bacteria except P. dextrinicus grew fast up to $10^6{\sim}10^7cfu/mL$ levels and lowered pH down to about pH 4 levels in 48 hours in both saps. The produced organic acids and lowered pH level inhibited the growth of spoilage microorganisms almost completely for 2 weeks during storage at room temperature. Addition of xylitol in the saps before fermentation accelerated the growth of lactic acid bacteria and increased the sweetness and overall taste of final product. The filtration process did not affect the mineral compositions of Betula platyphylla saps. Also the compositions and amounts of minerals showed very minor differences before and after fermentation in Betula platyphylla saps inoculated with L. acidophilus. By applying lactic acid fermentation to extend storage-life of tree saps instead of heat treatment, it was possible to keep natural minerals in active forms without any modifications.

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.

Anti-inflammatory Effect of Natural Plant Extracts on in vitro Rumen Fermentation and Methane Emission (천연 식물 추출물의 항염 효과가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Lim, Jung Hwa;Son, Chang Jun;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.97-109
    • /
    • 2017
  • This study was conducted to investigate the effects of anti-inflammatory plant extracts on the in vitro rumen fermentation characteristics and methane emission. Anti-inflammatory plant extracts from Morus bombycis Koidz, Mallotus japonicus L., Morus alba L., Paulownia coreana Uyeki, Isodon japonicus Hara and Ginkgo biloba L. were used in the study. The ruminal fluid(5 mL), McDougall buffer(10 mL), timothy as a substrate(0.3 g) and each anti-inflammatory plant extract(5% of substrate) were dispensed anaerobically into 50mL serum bottle. The mixtures were incubated for 3, 9, 12, 24, 48 and 72h at $39^{\circ}C$ without shaking. Supplementation of the anti-inflammatory plant extracts did not effects characteristics(pH, digestibility of dry matter, glucose concentration, ammonia concentration, protein concentration, VFA) on rumen fermentation. Total gas was showed a different pattern depending on treatments. Carbon dioxide was significantly(p<0.05) higher in Morus alba and Isodon japonicus than in control at 48h. Methane was significantly(p<0.05) lower in treatment than in control at initial fermentation. However the more incubation time was increased, the more methane emission was higher in treatment than in control. The concentrations of polyphenol and flavonoid were higher in Ginkgo biloba. In conclusion, supplementation of the anti-inflammatory plant extracts did not effect on rumen fermentation and methane emission was decreased in initial fermentation.

Effects of diets for three growing stages by rumen inocula donors on in vitro rumen fermentation and microbiome

  • Ryukseok Kang;Huseong Lee;Hyeonsu Seon;Cheolju Park;Jaeyong Song;Joong Kook Park;Yong Kwan Kim;Minseok Kim;Tansol Park
    • Journal of Animal Science and Technology
    • /
    • v.66 no.3
    • /
    • pp.523-542
    • /
    • 2024
  • Hanwoo and Jeju Black cattle (Jeju Black) are native breeds of Korean cattle. Jeju Black cattle are recognized as natural monuments and are known to exhibit slower growth rates compared to Hanwoo. While several studies have analyzed the genetic characteristics of these cattle, there has been limited research on the differences in their microbiome. In this study, rumen fluid was obtained from three Hanwoo steers and three Jeju Black steers, and three different diets (total mixed rations [TMRs] for growing, early fattening, and late fattening periods) were used as substrates for in vitro fermentation. The in vitro incubation was conducted for 3 h and 24 h following a 2 × 3 factorial arrangement. After both incubation periods, fermentation characteristics were analyzed, and ruminal microbiome analysis was performed using 16S rRNA gene sequencing, employing both QIIME2 and PICRUSt2. The results revealed significant differences in the ruminal microbiota due to the inoculum effect. At the phylum level, Patescibacteria and Synergistota were found to be enriched in the Jeju Black inoculum-treated group. Additionally, using different inocula also affected the relative abundance of major taxa, including Ruminococcus, Pseudoramibacter, Ruminococcaceae CAG-352, and the [Eubacterium] ruminantium group. These microbial differences induced by the inoculum may have originated from varying levels of domestication between the two subspecies of donor animals, which mainly influenced the fermentation and microbiome features in the early incubation stages, although this was only partially offset afterward. Furthermore, predicted commission numbers of microbial enzymes, some of which are involved in the biosynthesis of secondary metabolites, fatty acids, and alpha amylase, differed based on the inoculum effect. However, these differences may account for only a small proportion of the overall metabolic pathway. Conversely, diets were found to affect protein biosynthesis and its related metabolism, which showed differential abundance in the growing diet and were potentially linked to the growth-promoting effects in beef cattle during the growing period. In conclusion, this study demonstrated that using different inocula significantly affected in vitro fermentation characteristics and microbiome features, mainly in the early stages of incubation, with some effects persisting up to 24 h of incubation.

Microbial Metabolism of trans-2-Dodecenal

  • Kim, Hyun-Jung;Park, Hae-Suk;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • Microbial metabolism of trans-2-dodecenal (1) was studied. Screening studies have revealed a number of microorganisms that are capable of metabolizing trans-2-dodecenal (1). Scale-up fermentation with Penicillium chrysogenum resulted in the production of two microbial metabolites. These metabolites were identified using spectroscopic methods as trans-2-dodecenol (2) and trans-3-dodecenoic acid (3).

Changes of Enzymatic Activities during the Fermentation of Soybean-Soypaste by Aspergillus spp. (Aspergillus spp.에 의한 콩된장 발효 과정중의 효소활성 변화)

  • Joo, Hyun-Kyu;Kim, Nam-Dae;Yoon, Ki-Suk
    • Applied Biological Chemistry
    • /
    • v.32 no.3
    • /
    • pp.295-302
    • /
    • 1989
  • This study was carried out as a preliminary test to investigate the improvement of soysauce and soybean paste for natural food. The soybean was treated on raw, soaked, roasted, and steamed condition and it was maked that rice koji was inoculated by Asp. oryzae, Asp. niger, Asp. awamori and on natural condition fermented. They were maked raw soybean-soypaste $(S_0)$, soaked soybean-soypaste $(S_1)$, roasted soybean-soypaste $(S_2)$, and steamed soybean-soypaste $(S_3)$ from soybean (60%), rice koji (30%) and salt (10%) respectively in order to investigate the changes of enzymes activity(amylase, protease, lipase and lipoxygenase activity) during fermentation of them. The results obtained were summarized as follows; Amylase activity was in the order of natural fermented microorganisms>Asp. oryzae>Asp. awamori>Asp. niger in the microorganisms, and $S_0>S_1>S_2>S_3$ in the soybean treatments. Protease activity was in the order of natural fermented microorganisms>Asp. niger>Asp. oryzae>Asp. awamori in the microorganisms, and $S_3>S_2>S_1>S_0$ in the soybean treatments. Lipase activity was a similar tendency in the microorganisms, but it was in the order of $S_0>S_1>S_3>S_2$ in the soybean treatments. Lipoxygenase activity was in the order of natural fermented microorganisms>Asp. oryzae>Asp. awamori>Asp. niger in the microorganisms, and $S_0>S_1>S_3>S_2$ in the treatments.

  • PDF

Screening of Bacteriocinogenic Lactic Acid Bacteria and Their Antagonistic Effects in Sausage Fermentation

  • Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.461-467
    • /
    • 1996
  • Four strains of lactic acid bacteria (LAB), that lower the pH of sausage $\leq$ 4.2 within 24 h of incubation at $37^{\circ}C$, were screened from 57 bacteriocin producing LAB which were isolated from kajamie shikhae and natural fermented sausages. The proteinaceous nature of the bacteriocin was confirmed by losing antimicrobial activity after pronase treatment. Inhibitory activity against pathogens, times of bacteriocin production and sensory tests were compared between 4 isolates and 3 commercial starters. Especially, strain NFS #8-1, screened from natural fermented sausage and identified as Pediococcus acidilactici, antagonized a large number of foodborne pathogens including Listeria monocytogenes, Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Salmonella typhimurium and Staphylococcus aureus. Production of bacteriocin by strain NFS #8-1 was early in the growth phase (mid log phase) and its sensory acceptance was high. The feasibility of using strain NFS #8-1 as a starter for the production of microbiologically safe fermented sausage is envisaged.

  • PDF

Green Blends and Composites from Renewable Resources

  • Yu, L.;Petinakis, S.;Dean, K.;Bilyk, A.;Wu, D.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.216-216
    • /
    • 2006
  • A special group of polymers, those from renewable resources, has attracted an increasing amount of attention over the last two decades, due to two major reasons: environmental concerns and the limitations of our finite petroleum resources. Generally, polymers from renewable resources (PFRR) can be classified into three groups: (1) natural polymers, such as starch, protein and cellulose; (2) synthetic polymers from natural monomers, such as polylactic acid (PLA); and (3) polymers from microbial fermentation, such as polyhydroxybutyrate (PHB). Like many other petroleum based polymers, various properties of PFRR are also vastly improved through blending and composites formation.

  • PDF