• Title/Summary/Keyword: natural evaporation

Search Result 148, Processing Time 0.027 seconds

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Estimation of Evaporation Rate of Swine Slurry Using the Natural Evaporation System(NES) in summer (여름철 자연증발시스템(NES)의 腞슬러리 증발효율 평가)

  • Kim, K.Y.;Choi, H.L.;Kim, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.459-474
    • /
    • 2002
  • The purpose of this study was to establish the optimal operation condition of the natural evaporation system(NES) which was used for reducing swine slurry. Especially the main point of this study is to estimate the effect of climate condition(clear & rainy) and spray type(batch & flow) for the evaporation rate of swine slurry applying the NES in summer. Experiment was performed from June to August, which was generally regarded as summer in Korea, with the spray type of batch in 2000 and that of flow in 2001. As a result of experiment for batch and flow type, the averaged evaporation rate was measured into 2.71 and 3.59 l/ton . $m^2$ . day on clear days and 0.62 and 0.66 l/ton . $m^2$ . day on raint days, respectively. Based on the calculated evaporation rate by the climate condition and the spray type, it was proved that the averaged reduction rate for total input(1t/day) were 15.99% and 3.19% on clear and rainy days and the evaporation rate of the flow type was superior to that of the batch type by 5%, approximately. Therefore, it was concluded that the supplementary equipment, such as fan, should by operated in rainy days and the spray type of flow rather than that of batch should be recommended to increase the evaporation rate in the natural evaporation system(NES).

Characteristics of Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide and Correlation Development near the Critical Point (임계점 부근에서 이산화탄소의 증발열전달 및 압력강하 특성 연구와 상관식 개발)

  • 윤석호;조은석;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.530-537
    • /
    • 2004
  • In recent years, carbon dioxide among natural refrigerants has gained consider-able attention as an alternative refrigerant due to its excellent thermophysical properties. However, few investigations have been performed to develop useful correlations of heat trans-fer coefficients and pressure drop during evaporation of carbon dioxide. This study is aiming at providing the characteristics of heat transfer and pressure drop during the evaporation process of carbon dioxide. Heat is provided by a direct heating method to the test section, which was made of a seamless stainless steel tube with an inner diameter of 7.53 mm, and a length of 5.0 m. Experiments were conducted at saturation temperatures of -4 to 2$0^{\circ}C$, heat fluxes of 12 to 20 ㎾/$m^2$ and mass fluxes of 200 to 530 kg/$m^2$s. A comparison of different heat transfer correlations applicable to evaporation of carbon dioxide has been made. Based on the experiments for evaporation heat transfer and pressure drop, new correlations were developed. The newly developed empirical correlations for the heat transfer and pressure drop show average absolute deviations of 15.3% and 16.2%, respectively.

A Study on the Natural Evaporation Capacity of LPG Container (액화석유가스 용기의 자연 증발량에 관한 연구)

  • Jo Young-Do;Kim Ji-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.22-29
    • /
    • 2001
  • The number of gas containers and the period of exchanging gas containers are vsy important in designing liquefied petroleum gas(LPG) supply system for small capacity domain. And also the evaluation of remaining LPG in containers to be exchanged is very useful information in commerce. However seldon has been studied on calculating method about those with respect to gas consumption pattern. In this study, a simulation method was developed to estimate the evaporation capacity of LPG container, the mass gas flow rate from LPG container, the temperature and vapor pressure of LPG, and the remained LPG at containers to be exchange by using LPG property equations, mass balance equation, and heat balance equation. The simulation results were correlated well with experimental data. The overall heat transfer coefficient from air to LPG is approximately $9{\~}13 kcal/m^2{\cdot}hr{\cdot}^{\circ}C$ and does not strongly affect on the evaporation capacity of LPG container. The mass gas flow rate from LPG container is constant when the vapor pressure of LPG is within pressure regulator's control range. While, out of range, it suddenly reduce to a evaporation rate which is balanced with heat transfer from air. The evaporation capacity of LPG container increased with surrounding temperature and the composition of propane, and decreased drastically with continuous gas consumption. The number of gas containers divided the number of houses using gas supply system was reduced by using automatic gas feeding device.

  • PDF

Comparison of Desiccation Methods after Hand Washing for Removing Bacteria (손 씻기 후 손 건조방법에 따른 세균 제거 효과 비교)

  • Park, Jeong-Sook;Kim, Dan-Bi;Min, Hong-Gi
    • Journal of Korean Biological Nursing Science
    • /
    • v.13 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • Purpose: The purpose of this study was to analyze effects of hand drying methods after hand-washing. Hand drying methods consisted of spontaneous evaporation, paper towel, hand dryer with rubbing, and hand dryer without rubbing. Methods: The research design was a crossover design. The subjects were eighteen university students and randomly assigned in four group. Each group had the schedule of treatment. The schedule tested one drying method per a day and proceeded for 4 days. The data collection was performed from July 27 to July 30, 2010. Data were analyzed by Kruskal-Wallis, Mann-Whitney and Wilcoxon test. Results: There was significant difference between the after CFU between natural dry, paper towel, air dryer with hand rubbing, and air dryer without hand rubbing(p=.006). The after CFUs of paper towel, natural dry and air dryer without hand rubbing groups were statistically less than air dryer with hand rubbing group. Conclusion: It was shown that the paper towel, spontaneous evaporation and without rubbing hand dryer are effective hand drying interventions on reducing CFU on hand. However additional researches with large sample and strict methodology are needed.

Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube (내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF

Analytical Study on the Temperature and Pressure Changes in DME FPSO Storage Tank with Liquid Filling level (DME FPSO 저장탱크의 액충전량에 따른 온도 및 압력변화에 대한 해석 연구)

  • Yun, Sangkook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1024-1029
    • /
    • 2012
  • As DME (Dimethyl ether) is the one of the future possible massive energy sources synthesized from natural gas, KOGAS has been doing to obtain overseas resources to meet the domestic needs. and tried to build new DME FPSO ship. This paper presents that it can help for the DME storage tank designers and storage management engineers doing proper work by understood the evaporation phenomena and pressure change of DME by thermal intake in storage tank. The experimental result shows that the evaporation rate and pressure are increased with higher liquid filling level. The proper DME liquid filling level in tank is obtained as lower than full 98% volume of tank in case of storing longer than a day, because the pressure is increased rapidly with full 98% filled level of storage tank.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.