• Title/Summary/Keyword: natural evaporation

Search Result 149, Processing Time 0.024 seconds

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

Spectroscopic Characterization of 400℃ Annealed ZnxCd1-xS Thin Films (400℃ 열처리한 삼원화합물 ZnxCd1-xS 박막의 분광학적 특성 연구)

  • Kang, Kwang-Yong;Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Jeong-Ju;Yu, Yun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • II~VI compound semiconductors, $Zn_xCd_{1-x}S$ thin films have been synthesized onto indium-tin-oxide(ITO) coated glass substrates using thermal evaporation technique. The composition ratio x($0{\leq}x{\leq}1$) was varied to fabricate different kinds of $Zn_xCd_{1-x}S$ thin films including CdS(x=0) and ZnS(x=1) thin films. Then, the deposited thin films were thermally annealed at $400^{\circ}C$ to enhance their crystallinity. The chemical composition and electronic structure of films were investigated by using X-ray photoelectron spectroscopy(XPS). The optical energy gaps of the samples were determined by ultra violet-visible-near infrared(UV-Vis-NIR) spectroscopy and were found to vary in the range of 2.44 to 3.98 eV when x changes from 0 to 1. Finally, we measured the THz characteristics of the $Zn_xCd_{1-x}S$ thin films using THz-TDS(time domain spectroscopy) system to identify the capability for electronic and optical devices in THz region.

Graphoepitaxy of ZnO thin films by Zn evaporation (Graphoepitaxy법을 이용하여 SiO$_2$ 기판 위에 제작한 ZnO 박막의 특성에 관한 연구)

  • Kim, Gwang-Hui;Choi, Seok-Cheol;Lee, Tae-Hun;Jung, Jin-U;Park, Seung-Hwan;Jung, Mi-Na;Jung, Myeong-Hun;Yang, Min;Yao, Takafumi;Chang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1026-1029
    • /
    • 2005
  • The feasibility of graphoepitaxial growth of compound semiconductors has been studied. Two kinds of substrates were prepared; one is smooth substrate, the other one is a periodic structured substrate. ZnO film was formed on both substrates by thermal evaporation of elemental Zn and natural oxidation of the deposited Zn. Thermal treatment was performed to improve the crystal quality and to investigate the effect of the periodic structure. Atomic force microscopy (AFM) and photoluminescence (PL) were used to characterize the samples. As a result, the improvement of crystallinity as annealing temperature increase, has been observed from both samples. The samples, annealed at 800 $^{\circ}$C, show the best crystal quality in terms of PL linewidth. Also the sample grown on grating structure shows better crystal quality than the sample grown on flat substrate. It implies that the periodic structure affects the crystallinity of the films, and the graphoepitaxy of compound semiconductors is possible by using appropriate surface structure.

  • PDF

Performance comparison of cascade refrigerator and two-stage compression refrigerator (캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.625-631
    • /
    • 2014
  • In order to obtain a low evaporation temperature ranging from $-30^{\circ}C{\sim}-50^{\circ}C$, a cascade refrigeration system and two-stage compression one-stage expansion refrigeration system is required. However, the research results of performance comparison of these refrigeration system are very scarce. This paper were compared the performance characteristics of R744-R404A cascade refrigeration system and R404A two-stage compression refrigeration system. The COP of R404A two-stage compression refrigeration system is about 36~57% greater than that of R744-R404A cascade refrigeration system in the range of evaporation temperature of $-30^{\circ}C{\sim}-50^{\circ}C$. But R404A two-stage compression refrigeration system is unstable because COP is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. In this case, not efficient for long-term use. Whereas R744-R404A cascade refrigeration system using natural refrigerants. Therefore, it is environmentally friendly. And this system is high-efficiency refrigeration system. The reason it can be configured by selecting the suitable refrigerant at high-temperature side and low-temperature side. From the above results, select the appropriate low temperature refrigeration system by considering the environmental and performance aspects.

Predicting Water Movement in the Soil Profile of Corn Fields with a Computer-Based STELLA Program to Simulate Soil Water Balance (토양수분 수지계산에 의한 옥수수 포장에서의 토양수분 이동 예측)

  • Kim, Won-Il;Jung, Goo-Bok;Lee, Jong-Sik;Kim, Jin-Ho;Shin, Joung-Du;Kim, Gun-Yeob;Huck, M.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.222-229
    • /
    • 2005
  • A simplified one-dimensional model STELLA was used to predict soil water movement in lllinois corn fields using soil water balance sheets. It offered the potential to increase understanding of soil nitrate and agrochemical leaching process. The model accounted for aU possible annual inputs and outputs of water from a closed ecosystem as represented by corn fields. Water inputs included precipitation, while outputs included runoff, transpiration, evaporation and drainage. To run the model required daily inputs of two climatic data measurements such as daily precipitation and pan evaporation. Vertical water flow through the soil profile was calculated with first order equation including the difference in hydraulic conductivity and matric potential at the various soil types. The output results included daily changes of water content in the soil layers and daily amount of water losses including run-off, percolation, transpiration. This model was verified using Illinois corn field data for the soil water content measured by neutron scattering methods through 1992 to 1994 growing seasons. Approximately 22 to 78% of simulated water contents agreed with the measured values and their standard deviation, depending on soil types, whereas 30 to 70% of simulated water values agreed with the measured values and their standard deviations depending on soil layers.

The Study of Composition Analysis of Natural Ghana Cacao Powder and Evaluation on its Skin Improvement Effect (Natural Ghana Cacao Powder의 Polyphenol 성분분석 및 피부개선효과 연구)

  • Shim, Seung-Bo;Oh, Seong-Geun;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2434-2438
    • /
    • 2011
  • Ghana is the country that produces world's biggest production of Cacao. Cacao is the main ingredient of chocolate, which has been widely used in a variety of food as its anti-oxidantal effect is well known to public. Moreover, Ghana-produced Cacao is known to have a bigger amount of polyphenol compared to the ones produced elsewhere, and as they are not processed with alkali Ghana-produced Cacoa is slightly acidic as it is. This project aimed at analysing this natural Ghana Cacao's polyphenol composition, developed cosmetic mask using it and don skin irritation tests in order to study skin improvement effect. As a result, it was found that Ghana-produced Cacao contains approximately 3.6% of tannin, showing 5.6 pH. From the result of the first skin irritation test, the result of experiment of the cometic masks which contain 15% of Ghana cacao powder showed that the irritation was not shown. After 120 minutes, in the experiment of skin improvement effect, it was proved to have skin improvement effect, appearing 20% increase in skin moisture, -17% decrease in skin moisture evaporation, convergence of 5.3pH, 24% increase in skin elasticity.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.

Wilted Symptom in Watermelon Plant under Ventilation Systems (환기처리에 의한 수박의 시듦증 발생 기작)

  • Cho, Ill-Hwan;Ann, Joong-Hoon;Lee, Woo-Moon;Moon, Ji-Hye;Lee, Joo-Hyun;Choi, Byung-Soon;Son, Seon-Hye;Choi, Eun-Young;Lee, Sang-Gyu;Woo, Young-Hoe
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.529-534
    • /
    • 2010
  • Occurrence of wilted symptom in watermelon plant ($Citrullus$ $lanatus$ L.) is known to be caused by physiological disorder. The symptom results in the loss of fruit production and thus the economical loss of watermelon growers. The incidence of symptom is often found from the middle of March to the end of May in the major watermelon crop production areas of Korea (i.e. Uiryeong, Gyeongnam (lat $37^{\circ}$56'64"N, long $126^{\circ}$99'97"E)). Despite of extensive information about the physiological disorder, little study has been conducted to understand a relationship between the wilted symptom and accompanying environment factors (e.g. temperature). This study aimed to investigate effects of environmental conditions amended by a forced-ventilation system on physiological characteristics of watermelon and incidence of the wilted symptom. Watermelon plants were grown from January to May, 2009 with either the forced-or natural-ventilation treatment in a greenhouse located in the Uiryeong. In the result, the forced-ventilation treatment decreased the air, leaf and root-zone temperature approximately $4.5^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively, compared to the natural-ventilation. The fruit growth rate was maximized twice during the entire growing period. The higher rate of fruit growth was observed under the natural-ventilation than the forced one. Maximization of the fruit growth rate (approximately 430 g per day) was first observed by 12 days after fruiting under the natural-ventilation treatment, while the second one (approximately 350 g per day) was observed by 24 days after fruiting. The wilted symptom started occurring by 22 days after fruiting under the natural-ventilation, whereas no incidence of the symptom was found under the forced-ventilation treatment. Interestingly, the forced-ventilation lowered the fruit growth rate (approximately 320 g per day) compared to the natural one. Maximization of the fruit growth rate under the forced-ventilation was found at 4 days later than that under the natural one. This result coincided with a slower plant growth under the forced-ventilation treatment. These results suggest that the forced-ventilation slows down extension growth of fruit and plant, which may be associated with lowering leaf temperature and saturation deficit. We suggest the hypothesis that the forced-ventilation may alleviate stress of the wilted symptom by avoiding extreme water evaporation from leaves due to high temperature and thus by reducing competition between leaves and fruits for water. More direct and detailed investigations are needed to confirm the effect of the forced ventilation.

Evaluation of Absorbent-Pervious Alkali-Activated Block Using Recycled Aggregate (순환골재를 이용한 보투수성 알칼리 결합재 블록의 성능평가)

  • Park, Kwang-Min;Kim, Hyung-Suk;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.160-167
    • /
    • 2017
  • The purpose of this study is to identify the possibility of developing the 100% Recycled-resources Absorbent-Pervious Alkali-activated Blocks using both the alkalli-binder and the recycled aggregate. In addition, It established a test method such as Void ratio, compressive strength, coefficient permeability, absorption, and evaporation. As a result, an alkali-activated using recycled aggregate block was able to manufacture an 24 MPa class absorbent-pervious blocks with a liquid type sodium silicate and early high temperature curing. In this case, water-holding capacity, absorption and relative absorption were more effective than the natural aggregates. In conclusion, Absorbent-pervious alkali-activated Block Using recycled aggregate has a surface temperature reducing effect of approximately 10 % compared to ordinary concrete block.

A Study of Simulation on the Refrigerated Warehouse System Based on the Cold Energy of Lng Using the Pro-Ii Simulator (LNG 냉열을 이용한 냉장·냉동 창고 모사에 관한 연구)

  • HAN, DANBEE;KIM, YOONJI;YEOM, KYUIN;SHIN, JAERIN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • When Liquified Natural Gas (LNG) is vaporized into NG for industrial and household usage, tremendous cold energy was transferred from LNG to seawater during phase-changing process. This heat exchanger loop is not only a waste of huge cold energy, but will cause thermal pollution to the coastal fishery area also when cold water was re-injected into the sea. In this study, an innovation design has been performed to reclaim the cold energy for -35 to $62^{\circ}C$ refrigerated warehouse. Conventionally, this was done by installing mechanical refrigeration systems, necessitating tremendous electrical power to drive temperature. A closed loop LNG heat exchangers in series was designed to replace the mechanical or vapor-compression refrigeration cycle by process simulator. The process simulation software of PRO II with provision has been used to simulate this process for various conditions, what to effect on cold energy and used energy for re-liquefaction and evaporation process. In addition, through analysis the effect of the change of LNG supply pressure on sensible and latent heat, optimum operational conditions was suggested for LNG cold energy warehouse.