DOI QR코드

DOI QR Code

Spectroscopic Characterization of 400℃ Annealed ZnxCd1-xS Thin Films

400℃ 열처리한 삼원화합물 ZnxCd1-xS 박막의 분광학적 특성 연구

  • Kang, Kwang-Yong (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Lee, Seung-Hwan (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Lee, Nam-Kwon (Convergence of IT Devices Institute Busan, Dong-Eui University) ;
  • Lee, Jeong-Ju (Department of Physics and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yu, Yun-Sik (Department of Radiological Science, Dong-Eui University)
  • 강광용 (동의대학교 부산IT융합부품연구소) ;
  • 이승환 (동의대학교 부산IT융합부품연구소) ;
  • 이남권 (동의대학교 부산IT융합부품연구소) ;
  • 이정주 (경상대학교 물리학과 및 기초과학연구소) ;
  • 유윤식 (동의대학교 방사선학과)
  • Received : 2014.10.27
  • Accepted : 2015.01.13
  • Published : 2015.01.30

Abstract

II~VI compound semiconductors, $Zn_xCd_{1-x}S$ thin films have been synthesized onto indium-tin-oxide(ITO) coated glass substrates using thermal evaporation technique. The composition ratio x($0{\leq}x{\leq}1$) was varied to fabricate different kinds of $Zn_xCd_{1-x}S$ thin films including CdS(x=0) and ZnS(x=1) thin films. Then, the deposited thin films were thermally annealed at $400^{\circ}C$ to enhance their crystallinity. The chemical composition and electronic structure of films were investigated by using X-ray photoelectron spectroscopy(XPS). The optical energy gaps of the samples were determined by ultra violet-visible-near infrared(UV-Vis-NIR) spectroscopy and were found to vary in the range of 2.44 to 3.98 eV when x changes from 0 to 1. Finally, we measured the THz characteristics of the $Zn_xCd_{1-x}S$ thin films using THz-TDS(time domain spectroscopy) system to identify the capability for electronic and optical devices in THz region.

II~VI족 화합물 반도체 $Zn_xCd_{1-x}S$ 박막을 Indium-tin-oxide(ITO)가 도포된 유리기판 상에 열증발법을 사용하여 증착하였다. 박막의 합성비(molar ratio) x($0{\leq}x{\leq}1$)는 CdS(x=0) 박막과 ZnS(x=1) 박막을 포함하여, 삼원화합물 $Zn_xCd_{1-x}S$ 박막을 제조하기 위하여 변화시켰다. 또한, 증착한 박막의 결정성을 높이기 위하여 진공전기로에서 열처리 하였으며, 분광학적 특성조사를 위해서는 $400^{\circ}C$에서 열처리한 $Zn_xCd_{1-x}S$ 박막이 최적임을 알았다. $Zn_xCd_{1-x}S$ 박막의 합성비(x)와 전자적 구조를 조사하기 위하여 X-선 광전자 분광법(XPS)을 사용하였고, 박막시료의 광학적 에너지 띠 간격 $E_g$는 자외선-가시광-근접 적외선(UV-Vis-NIR) 분광법으로 측정하였으며, 합성비(x)값이 0에서 1까지 변화함에 따라 2.44~3.98 eV 범위의 값을 보여주었다. 끝으로, THz-TDS(Time Domain Spectroscopy) 시스템을 사용하고 $Zn_xCd_{1-x}S$ 박막의 THz파 특성을 측정하여 테라헤르츠(THz) 영역용 전자 및 광학 소자로서 응용가능성을 확인하였다.

Keywords

References

  1. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials, 3rd ed., Springer-Verlag, Berlin, p. 141, 2007.
  2. D. Kurbatov, A. Opanasyuk, and H. Khlyap, "Substratetemperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation", Phys. Status Solidi A, vol. 206, no. 7, p. 1549, 2009. https://doi.org/10.1002/pssa.200824472
  3. S. Ninomiya, S. Adachi, "Optical properties of cubic and hexagonal CdSe", J. Appl. Phys., vol. 78, p. 4681, 1995. https://doi.org/10.1063/1.359815
  4. V. Ruxandra, S. Antohe, "The effect of the electron irradiation on the electrical properties of thin polycrystalline CdS layers", J. Appl. Phys., vol. 84, p. 727, 1998. https://doi.org/10.1063/1.368129
  5. S. Fujita, M. Funato, S. Hayashi, and S. Fujita, "Cubic ZnCdS lattice-matched to GaAs: A novel material for short-wavelength optoelectronic applications", Japan J. Appl. Phys., vol. 28, no. 6, LL. 898, 1989. https://doi.org/10.1143/JJAP.28.L898
  6. W. Xia, J. A. Welt, H. Lin, H. N. Wu, M. H. Ho, and C. W. Tang, "Fabrication of $Cd_{1-x}Zn_xS$ films with controllable zinc doping using a vapor zinc chloride treatment", Sol. Energ. Mat. Sol. C, vol. 94, p. 2113, 2010. https://doi.org/10.1016/j.solmat.2010.06.037
  7. G. Gordillo, E. Romero, "Structural characterization of thin films based on II-VI ternary compounds deposited by evaporation", Thin Solid Films, vol. 484, p. 352, 2005. https://doi.org/10.1016/j.tsf.2005.02.021
  8. Y. Raviprakash, K. V. Bangera, and G. K. Shivakumar, "Preparation and characterization of $Cd_{1-x}Zn_xS$ thin films by spray pyrolysis technique for photovoltaic applications", Sol. Energy, vol. 83, p. 1645, 2009. https://doi.org/10.1016/j.solener.2009.06.004
  9. C. Natarajan, G. Nogami, and M. Sharon, "Electro-deposition of $Zn_{1-x}Cd_xSe$ (x=0-1) thin films", Thin Solid Films, vol. 261, p. 44, 1994.
  10. H. C. Wen, C. S. Yang, and W. C. Chou, "Effect of microstructure on the nanomechanical properties of $Zn_{1x}-Cd_xSe$ alloys", Appl. Surf. Science, vol. 256, p. 2128, 2010. https://doi.org/10.1016/j.apsusc.2009.09.059
  11. W. S. Li, Z. X. Shen, D. Z. Shen, and X. W. Fan, "Micro-Raman and photoluminescence investigation of $Zn_x-Cd_{1-x}Se$ thin film under high pressure", J. Appl. Physics, vol. 84, p. 5198, 1998. https://doi.org/10.1063/1.368771
  12. S. Singhal, A. K. Chawla, H. O. Gupta, and R. Chandra, "Effect of laser flux density on ZnCdS thin films", Thin Solid Films, vol. 518, p. 1402, 2009. https://doi.org/10.1016/j.tsf.2009.09.115
  13. J. I. Pankove, Optical Processes in Semiconductors, Dover Publications, New York, 2012, Chaps. 1-3.
  14. R. Mariappan, M. Ragavendar, and V. Ponnuswamy, "Growth and characterization of chemical bath deposited $Cd_{1-x}Zn_xS$ thin films", J. of Alloys and Compounds, vol. 509, p. 7337, 2011. https://doi.org/10.1016/j.jallcom.2011.04.088
  15. R. Poerschke, Data in Science and Technology, Springer-Verlag, Berlin, 1992).
  16. Menlo GmbH, "TEKA K8", Worksheet, 2013.
  17. Jose A. Hejase, Edward J. Rothwell, and Premjeet Chahal, "A multiple angle method for THz time-domain material characterization", IEEE Trans. on THz Sci. Tech., vol. 3, no. 5, p. 656, 2013. https://doi.org/10.1109/TTHZ.2013.2278460