• Title/Summary/Keyword: natural ecosystems

Search Result 363, Processing Time 0.03 seconds

Development and Evaluation of Coal-dust Water Flocculant using Chitosan (키토산을 이용한 탄진수 응집제 개발 및 평가)

  • Hong, Woong-Gil;Nah, Jae-Woon;Jeong, Gyeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.139-142
    • /
    • 2021
  • Coal-fired power plants use coal as the main raw material, and when a coal is moved, a dust generation and spontaneous ignition of coal occur. To prevent this, water is sprayed. As a result, wastewater called "coal-dust water" flows out of coal dust and water mixed together, causing environmental pollution. In this study, in order to solve this problem, we developed a natural flocculant that can purify water by aggregating fine dust using chitosan and tried to prove its applicability. It was found that the optimum flocculation concentration was 4 ppm by adding various concentrations of flocculant to the coal-dust water, and it was confirmed that the developed material had very good coal-dust flocculation capacity through permeability and coal-dust removal efficiency. In addition, the cytotoxicity of the flocculant was evaluated through the MTT assay and it was found that there is no toxicity at all. We believe that the flocculant developed in this study can effectively adsorb coal-dust without affecting human and natural ecosystems.

A Study on the Estimation Method of Carbon Storage Using Environmental Spatial Information and InVEST Carbon Model: Focusing on Sejong Special Self-Governing City - Using Ecological and Natural Map, Environmental Conservation Value Assessment Map, and Urban Ecological Map - (환경공간정보와 InVEST Carbon 모형을 활용한 탄소저장량 추정 방법에 관한 연구: 세종시를 중심으로 - 생태·자연도, 국토환경성평가지도, 도시생태현황지도를 대상으로 -)

  • Hwang, Jin-Hoo;Jang, Rae-ik;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.15-27
    • /
    • 2022
  • Climate change is considered a severe global problem closely related to carbon storage. However, recent urbanization and land-use changes reduce carbon stocks in terrestrial ecosystems. Recently, the role of protected areas has been emphasized as a countermeasure to the climate change, and protected areas allow the area to continue to serve as a carbon sink due to legal restrictions. This study attempted to expand the scope of these protected areas to an evaluation-based environmental spatial information theme map. In this study, the area of each grade was compared, and the distribution of land cover for each grade was analyzed using the Ecological and Nature Map, Environmental Conservation Value Assessment Map and Urban Ecological Map of Sejong Special Self-Governing City. Based on this, the average carbon storage for each grade was derived using the InVEST Carbon model. As a result of the analysis, the high-grade area of the environmental spatial information generally showed a wide area of the natural area represented by the forest area, and accordingly, the carbon storage amount was evaluated to be high. However, there are differences in the purpose of production, evaluation items, and evaluation methods between each environmental spatial information, there are differences in area, land cover, and carbon storage. Through this study, environmental spatial information based on the evaluation map can be used for land use management in the carbon aspect, and it is expected that a management plan for each grade suitable for the characteristics of each environmental spatial information is required.

A Study on the Introduction of Zoning in Biosphere Reserves: Focusing on the Laws Related Protected Areas

  • Lee, Young-Jin
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.95-105
    • /
    • 2021
  • Background and objective: A biosphere reserve is a complex concept that combines the preservation of biodiversity and the sustainable development with the region, outstanding ecosystems with worth conserving in worldwide. The purpose of this study is to suggest the way of zoning that can perform the functions of conservation, development, and logistics support of biosphere reserves. Methods: To meet the purpose of this study, the designation criteria, restrictions, and permissions of the protected area specified in the law for domestic protected areas were reviewed to classify the functions of a biosphere reserve. Results: Through this classification, 10 domestic protected areas with high ecological protection value, such as the natural beauty of the ecosystem, biodiversity, and habitats for wild animals and plants were derived as the core areas of the biosphere reserves. Also, a total of 21 protected zones that can function as a buffer to protect the core of the natural ecosystem from indiscriminate development such as resource protection, recovery, pollution prevention, and improvement were derived as appropriate sites for a buffer. In the review process, issues such as different behavioral restrictions and ranges of permission due to the application of different laws were identified, if two or more protected areas exist within one of the protected areas, there is a protected area that does not meet the criteria for designating use zone, or where behavior restrictions do not meet the zoning criteria of biosphere reserve, under the laws of domestic protected areas. Conclusion: Although this study was not able to carefully review most of the laws on domestic protected areas that are linked to other laws, it was able to categorize appropriate domestic protected areas that can act as the core and buffer zones of biosphere reserves.

Assessment and Enhancement of Ecosystem Services of Saemangeum Area (새만금 지역의 생태계서비스 평가와 증진 방안)

  • Seung-Joon Lee;Ji-Won Choi;Choong-Hyeon, Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.684-692
    • /
    • 2022
  • This study was conducted to assess ecosystem services provided for Saemangeum agricultural and life sites and surrounding areas and establish measures to enhance them. The ecosystem services in the Saemangeum region were found to be different depending on its land use type. Before reclamation, the quality of ecosystem service in the Saemangeum region was high in all aspects: supply, control, culture, and support service functions. After the reclamation, however, the quality of supply, regulating, and support services declined. Therefore, it is necessary to enhance the quality of regulating and support services provided by semi-natural habitats such as rice paddy and reservoirs to improve the ecosystem service of the Saemangeum agricultural and life site. The suggested service improvement includes transforming natural ecosystems, such as forests and rural areas, and vast agricultural land into rural tourism and ecotourism and strengthening cultural service functions centered on education and research related to agriculture. To this end, it is necessary to utilize large agricultural land and agricultural infrastructure to promote agricultural production and rural tourism and government support for areas where the aging population is a problem.

Addressing the concept of Methane and Carbon emissions by wetlands and the Status of Wetlands India: A Review

  • Farheen, Kaggalu Shaista;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.462-462
    • /
    • 2022
  • Wetlands are one of the most vital natural habitats on the planet. India is incredibly blessed to have a number of multifunctional wetland ecosystems. Wetlands, in addition to their functional importance, can act as sources or sinks for greenhouse gases (GHGs) depending on their intrinsic factors. Carbon (CO2) and Methane (CH4) are the major greenhouse gases (GHG's) emitted in wetlands. It is demonstrated that, despite having 4.6 percent of its area covered by natural or man-made wetlands, being home to a large number of wetlands, and being the world's second largest cultivator of paddy, India's wetlands, including paddy fields that are intermittently flooded as typical wetlands, have been very poorly studied in terms of GHG emissions. The purpose of this paper is to examine the status of Indian wetlands and wetlands in terms of CH4 and CO2 emissions. The present study also reviews various literature to provide the equations, parameters that are required for estimating carbon and methane and some of the best strategies for conserving carbon in wetlands. The findings suggest that both non-manipulative and manipulative measures can be used to improve Carbon Sequestration (CS). Non-manipulative measures aim to improve CS by increasing the spatial extent of wetlands, whereas manipulative measures aim to change the characteristics of specific wetland components that influence CS. Uncertainty in carbon dynamics projections under changing environmental conditions is caused by a number of Knowledge gaps: i) There is a lack of knowledge on how organic matter mineralizes and partitions into carbon dioxide, methane, and dissolved organic carbon, ii) With the notable exception of methane dynamics, models that represent the dynamic interaction of processes and their controls have yet to be established. As a result, more research is needed to fully understand the importance of wetlands in terms of GHG emissions and carbon sequestration in India.

  • PDF

Current Status and Management of Alien Turtles in Korea (외래거북의 국내 현황 및 관리방안)

  • Lee, Do-Hun;Kim, Young-Chae;Chang, Min-Ho;Kim, Suhwan;Kim, Dongeon;Kil, Jihyon
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.5
    • /
    • pp.319-332
    • /
    • 2016
  • Alien turtles belonging to Genus Trachemys have been designated as Invasive Alien Species since 2001 and their import has been banned in Korea. However, current status of import and distribution of the other alien turtles have not been reported. In this study, we aimed to investigate the taxa of alien turtles introduced into Korea, to assess their potential risks to the natural ecosystems and to suggest the future management directions of them in Korea. We identified 73 species of alien turtles belonging to 9 families. Since 2008, more than 6,000 kg of turtles have been imported annually and widely distributed through the pet shops, traditional markets and individual transactions. From the survey of natural habitats, we found that 8 species belonging to 3 families including Chrysemys picta, Pseudemys concinna, P. nelsoni, P. peninsularis, P. rubriventris, Mauremys sinensis, Macrochelys temminckii and Trachemys scripta have inhabited in 12 study sites. Out of 73 alien turtles, the potential adverse impacts of 13 species to ecosystems are serious when we considered status of designation of invasive alien species in other countries. For the management of alien turtles, it is required to register alien turtles in the import list and share general information such as import purpose, distribution and management condition among relevant authorities. The breeders and distributors must be obliged to identify turtles and to record management. The government must check transfer and migration of turtles periodically to prevent their introduction and spread into natural environments. The change of alien turtle populations in natural habitats should be monitored and their management plan should be developed to control the alien turtles in areas where the impacts are significant.

Estimating Worst Case Flood and Inundation Damages under Climate Change

  • Kim, Sunmin;Tachikawa, Yasuto;Nakakita, Eiichi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.189-189
    • /
    • 2016
  • To generate information that contributes to climate change risk management, it is important to perform a precise assessment on the impact in diverse aspects. Considering this academic necessity, Japanese government launched continuous research project for the climate change impact assessment, and one of the representative project is Program for Risk Information on Climate Change (Sousei Program), Theme D; Precise Impact Assessment on Climate Change (FY2012 ~ FY2016). In this research program, quantitative impact assessments have been doing from a variety of perspectives including natural hazards, water resources, and ecosystems and biodiversity. Especially for the natural hazards aspect, a comprehensive impact assessment has been carried out with the worst-case scenario of typhoons, which cause the most serious weather-related damage in Japan, concerning the frequency and scale of the typhoons as well as accompanying disasters by heavy rainfall, strong winds, high tides, high waves, and landslides. In this presentation, a framework of comprehensive impact assessment with the worst-case scenario under the climate change condition is introduced based on a case study of Theme D in Sousei program There are approx. 25 typhoons annually and around 10 of those approach or make landfall in Japan. The number of typhoons may not change increase in the future, but it is known that a small alteration in the path of a typhoon can have an extremely large impact on the amount of rain and wind Japan receives, and as a result, cause immense damage. Specifically, it is important to assess the impact of a complex disaster including precipitation, strong winds, river overflows, and high tide inundation, simulating how different the damage of Isewan Typhoon (T5915) in 1959 would have been if the typhoon had taken a different path, or how powerful or how much damage it would cause if Isewan Typhoon occurs again in the future when the sea surface water temperature has risen due to climate changes (Pseudo global warming experiment). The research group also predict and assess how the frequency of "100-years return period" disasters and worst-case damage will change in the coming century. As a final goal in this research activity, the natural disaster impact assessment will extend not only Japan but also major rivers in Southeast Asia, with a special focus on floods and inundations.

  • PDF

Pan-Yellow Sea Cooperation for the Conservation of Ecosystems in Coastal Wetlands of Yellow Sea - Focusing on the World Natural Heritage of coastal wetland- (황해 연안습지 생태계 보전을 위한 초국경협력 방향 - 갯벌의 세계자연유산 등재를 중심으로 -)

  • Hun-Ah Choi;Donguk Han
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2023
  • The wetland ecosystem has a key role in climate change and can capture and store carbon long-term as blue carbon. Currently, the Republic of Korea and People's Republic of China are preparing for the UNESCO World Natural Heritage Phase II inscription, and cross-border cooperation among the two Koreas and the People's Republic of China is expected in term of the coastal wetland in the Yellow Sea region. However, there is a lack of research on the importance of coastal wetland in the Yellow Sea region for migratory bird habitats, roosting sites, feeding grounds, and stop-over sites. Thus, this study focused on the coastal wetland of the Yellow Sea region, including the southwestern coastal wetlands in the Republic of Korea, the Yancheng National Nature Reserve in the People's Republic of China designated as UNESCO World Natural Heritage, and the Mundok Migratory Bird Reserve in the Democratic People's Republic of Korea, which is listed on the Tentative List. The cooperation for ecosystem conservation between the two Koreas and China was analyzed. The importance of coastal wetlands in the Yellow Sea region as habitats for migratory birds, roosting sites, feeding grounds, and stop-over sites, significant characteristics of Yellow Sea coastal wetlands, and conditions for cooperation among three countries, were analyzed. The direction of ecosystem conservation cooperation for coastal wetlands in the Yellow Sea region in this study will be developed into Pan-Yellow Sea conservation.

Establishing Habitat Quality Criteria for the Ecosystem Services InVEST Model Using AHP Techniques (AHP기법을 적용한 생태계서비스 InVEST 모형 서식지질 기준 설정)

  • Hae-Seon Shin;Jeong-Eun Jang;Sang-Cheol, Lee;Hye-Yeon Kwon;Gyeong-Rok Kim;Jin Jang;Song-Hyun Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.1
    • /
    • pp.67-78
    • /
    • 2024
  • The term ecosystem services refers to natural ecosystems' benefits to humans. Various models have been developed and applied to quantify ecosystem services. Habitat quality assessment is a widely used leading InVEST ecosystem service model. In Korea, habitat quality assessment is conducted for national parks. For habitat quality assessment, the initial value of habitat quality must be used to assess the sensitivity to threats, which varies depending on the country and application field. Therefore, an expert survey (AHP) was conducted based on previous habitat quality assessments in national parks to adjust the sensitivity, the initial value for the habit quality assessment. As a result of the AHP, 18 items were adjusted, including 10 items, such as natural grassland and unarranged fields, upward and 8 items, such as rivers and ponds, downward. Based on the adjusted sensitivity results, the habitat quality of Bukhansan National Park and Gyeryongsan National Park (urban type), Gyeongju National Park (historic type), Hallyeohaesang National Park (ocean type), and Jirisan National Park and Seoraksan National Park (mountain type) were adjusted. The results of the analysis showed that the habitat quality of urban dry areas and water bodies distributed in the national parks was reflected in the habitat quality assessment. In the future, it will be possible to evaluate the habitat quality of natural parks using this standard.

Evaluation of the Spatial Distribution of Water Yield Service based on Precipitation and Population (강수량 및 인구인자를 반영한 수원함양서비스의 공간분포 평가)

  • CHO, Heun-Woo;SONG, Chol-Ho;JEON, Seong-Woo;KIM, Joon-Soon;LEE, Woo-Kyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.1-15
    • /
    • 2016
  • The study of ecosystem service assessment has been actively researched and developed from Millennium Ecosystem Assessment(MA) and The Economics of Ecosystems and Biodiversity(TEEB). However, current assessments are limited to monetary assessments of ecosystem function and do not account for the effects of environmental factors and socioeconomic status. This study proposes methods to evaluate ecosystem service based on environmental and socioeconomic factors. The study assesses water yield function through the water yield model in InVEST Tool, and evaluates the overall ecosystem service of water yield as reflected by the amount of precipitation and population of the area. Results show that a difference exists between spatial distributions of the ecosystem function of water yield derived from natural conditions such as land cover and soil, and the spatial distribution of the ecosystem service that accounts for climate and socioeconomic factors. The value of ecosystem service increases for an area of higher population and lower precipitation with similar water yield. Thus, the ecosystem service of water yield should be evaluated not only by the water yield function, but also by climate and socioeconomic factors. The evaluation process described for this study should also be applicable to the evaluation of ecological services in other sectors.