• 제목/요약/키워드: natural decay durability

검색결과 7건 처리시간 0.022초

유럽규격 시험방법에 의한 국산 유용 침엽수재의 천연 내후성 평가 (Evaluation of Natural Decay Durability on Valuable Domestic Softwoods by European Standard Test Method)

  • 이종신;김영숙;김규혁;김경태;김윤희
    • 한국가구학회지
    • /
    • 제26권3호
    • /
    • pp.222-228
    • /
    • 2015
  • To evaluate the natural decay durability of valuable domestic softwoods which are used for preservative treatment in our country, we carried out decay test by European standard method. Of all test wood species, Japanese larch (Larix leptolepis) showed slightly high natural decay durability compared to other 4 wood species, Japanese red pine (Pinus densiflora), pitch pine (Pinus rigida), Japanese cedar (Cryptomeria japonica), and scots pine (Pinus sylvestris). However, all of evaluated domestic softwood species in this study caused high weight losses over about 30% in heartwood by test fungus, Poria placenta. We can hardly expect a good natural decay durability from these softwood species. According to the classification of the natural durability of European standard (EN 350-1), they are classified into "Not durable" or "Slightly durable". Therefore, if using these softwoods as exterior materials, we must do preservative treatment to ensure durability.

목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구 (A Study on the Types of the Displacement and Damage of Wooden Architectural Cultural Assets)

  • 신병욱
    • 한국농촌건축학회논문집
    • /
    • 제21권3호
    • /
    • pp.25-32
    • /
    • 2019
  • This study is to derive the types of displacement and damage that occur in wooden architecture cultural assets. Although the wooden architectural cultural assets are being repaired through continuous maintenance, secondary problems frequently occur. This is because the root cause of the problem has yet to be solved. The types of displacement and damage that occur in the wooden architecture cultural asset are classified into three parts: the foundation section, the gagu section, and the roof section. In turn, the three main factors that lead to displacement and damages are the structures' load impact, the durability deterioration, and the imbalance. Load impact is a phenomenon in which the member is subjected to a load that causes deformation or cracks. Durability decline is a natural phenomenon that reduces the performance of lumber as a result of check shake, termite damage, and decay. The imbalance is a condition in which the lumber is twisted and the force balance is lost, due to either drying shrinkage or displacement of the gagu section.

Radial Variation in Selected Wood Properties of Indonesian Merkusii Pine

  • Darmawan, Wayan;Nandika, Dodi;Afaf, Britty Datin Hasna;Rahayu, Istie;Lumongga, Dumasari
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권4호
    • /
    • pp.323-337
    • /
    • 2018
  • Merkusii pine wood (Pinus merkusii) was extensively planted throughout Indonesia, where it is only indigenous in northern Sumatera, by the Dutch during colonial times. The demand for this wood species, especially in the domestic market, has increased notably, despite its limited durability regarding decay resistance. The purpose of this study was to investigate the occurrence of juvenile and mature wood on merkusii pine and to analyze its radial features from pith to bark based on density, shrinkage, static bending in modulus of rupture and modulus of elasticity, fiber length, microfibril angle, and durability. A segmented modeling approach was used to find the juvenile-mature transition. The graveyard test was performed to characterize the termite resistance from pith to bark of merkusii pine. The maturations were estimated to start at radial increments of 15 cm from the pith by fiber length and of 12 cm from the pith by microfibril angle. The projected figures for the proportion of juvenile wood at breast height were around 65%. The results also indicate that the pine wood was $0.52g/cm^3$ in density, 1.45 in coefficient of anisotropy, which indicates its good stability, 7597 MPa in modulus of elasticity, and 63 MPa in modulus of rupture. Natural durability against subterranean termite of the merkusii pine wood was rated to be grade 4 to 0 from pith to bark. However, after being treated by Entiblu and Enborer preservatives, its rating increased to grade 10 to 9.

영상분석을 통한 바이오폴리머로 보강된 제방사면 안정성 해석 (Assessment of Levee Slope Reinforced with Bio-polymer by Image Analysis)

  • 고동우;강준구
    • Ecology and Resilient Infrastructure
    • /
    • 제6권4호
    • /
    • pp.258-266
    • /
    • 2019
  • 이 연구는 자연에 기반을 둔 하천기술을 제방에 적용하여 그 효과를 평가하기 위해 수행되었다. 친환경 신소재 바이오폴리머를 제체 표면에 적용하여 내구성과 친환경성을 증진시킴과 동시에 월류에 대응하기 위한 제방의 보강 대책을 수립하고자 하였다. 안동하천연구센터에 현장토를 사용하여 높이 1 m, 마루 폭 3 m, 사면경사 1:2, 총 길이 5 m의 중규모 제방모형을 제작하였으며, 바이오폴리머와 흙을 적정 비율로 혼합한 바이오-소일 (bio-soil)을 제방 전면에 5 cm 두께로 도포하여 월류 발생에 대한 제방의 안정성 평가 실험을 수행하였다. 영상분석 프로그램을 이용한 픽셀기반 분석 기법을 적용하여 시간에 따른 제방사면의 붕괴면적을 산정하였으며 그 결과, 신소재 적용 제방의 경우 완전붕괴가 발생하는 시간은 일반 흙 제방에 비해 12배 이상 증가해서 붕괴지연효과가 상당히 높은 것으로 나타났다.

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.

황장목의 부후 및 흰개미 저항성 (Decay and Termite Resistance of Yellow-Hearted Pine (Pinus densiflora for. erecta Uyeki))

  • 이애희;장재혁;황원중;김남훈
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권1호
    • /
    • pp.12-19
    • /
    • 2017
  • 황장목(黃腸木)은 적황색을 띠는 심재부의 비율이 높고 연륜폭이 매우 조밀하며 최소 수령이 100년 이상 되는 귀중한 소나무 자원이다. 조선시대에는 황장목을 궁궐, 사찰 등 중요 건축물에 사용하였다. 하지만 황장목의 재질특성에 관한 연구는 매우 부족한 실정이다. 본 연구에서는 황장목의 천연내구성을 검토하기 위하여 부후균 및 흰개미 저항성을 조사하였다. 공시균은 갈색부후균(Fomitopsis palustris)과 백색부후균(Trametes versicolor) 균주를 사용하였고, 공시 흰개미는 일본흰개미(Reticulitermes speratus)를 사용하였다. 그 결과, 갈색 및 백색부후균에 의한 중량감소율은 심재부에서 3.7~5.6%, 변재부에서는 16.1~26.3%로 나타났다. 또한, 흰개미 사충률은 심재부에서 약 47%로 매우 높게 나타났다. 이러한 결과를 통하여 황장목의 심재부는 부후균 및 흰개미에 대한 저항력이 뛰어난 것을 알 수 있었다.

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • 제39권1호
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.