• Title/Summary/Keyword: natural convection.

Search Result 854, Processing Time 0.029 seconds

A Study on the Visualization of Ice-formation Phenomena of Bath Water to Decide Maintenance Period of Gas Heater (가스히터 보수주기 결정을 위한 히터내부 열전달 매체액 결빙현상 가시화에 관한 연구)

  • Lee J. H.;Ha J. M.;Sung W. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out for the purpose of determination of maintenance period and investigation of weak point due to freeze when the gas heater of KOGAS valve station Is not operated in winter season. 3-dimensional non-linear numerical simulation was conducted in order to predict the time and location which bath water in heater reaches to ice point. FLUENT V 5.0, commercial code, is used for thermal fluid flow analysis. We thought this was problem of heat conduction solving the energy equation and modeled gas heater by using the real geometry and scale for performing the 3-dimensional simulation. It was analyzed complex heat transfer phenomena considering convection due to air on surface, conduction in insulation material, natural convection of liquid in heater and heat loss through the pipe.

  • PDF

Mixed Convection in Channels of an Electronic Cabinet (전자장비 채널에서의 혼합대류에 관한 연구)

  • 이재헌;남평우;박상동;조성환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.771-779
    • /
    • 1989
  • Numerical analysis by SIMPLE algorithm has been performed to predict the characteristics of flow and heat transfer in channels between the printed circuit boards of an electronic cabinet. It is assumed that the electronic parts release uniform heat flux per unit axial length to the cooling air. The air flow between channels is assumed fully developed laminar, incompressible, and mixed convective. In this study, the electronic parts are mounted on both sides of the prinked circuit boards by two kinds of configuration such as the zig-zag and the symmetric one. The Rayleigh numbers ranging from 0 to 10$^{6}$ are considered to predict the characteristics of the main flow and the secondary flow occurred by natural convection, the temperature distribution in channel, the heat transfer rate from heated electronic parts and the increase of friction factor by natural convection. As the results of numerical calculation, several conclusions are drawn as follows. The influence of natural convection on the flow characteristics appears strong when the Rayleigh number is above 10$^{4}$. The main axial flow rate decreases by a half or more at the Rayleigh number of 10$^{6}$ . Although the friction factor increases as Rayleigh number increases, the increasing rate of heat transfer is higher than that of the friction factor. The cooling efficiency of the zig-zig-configuration is superior to that of the symmetric configuration at same Rayleigh number.

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

제너 다이오드를 이용한 공기 유속계측 장치개발

  • 김영재;김희식;조흥근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.496-500
    • /
    • 1996
  • An air flow measurement device is proposed. The thermal characteristic of a semiconductor element is adopted as a cooling parameter of thermal convection rate. The difference between forced convection and natural convection of two Zener diodes results enough difference in temperature. Experiment at various air flow conditions shows the measuring capability of the air flow in a duct. This measuring device has some merits, such as a reliability n hard field condition, simple circuit for signal processing, small volume of the element, less air flow resistance, independance of various ai temperature. The experimental result shows that it is an exact and usefull air flow measurement device.

  • PDF

Analysis of Fuel Droplet Vaporization at High-Pressure Environment (고압상태에서의 연료액적의 증발특성 해석)

  • Lee, J.C.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 1996
  • A vaporization model for single component fuel droplet has been developed for applying to sub- and supercritical conditions. This model can account for transient liquid heat ins and circulation effect inside the droplet, forced and natural convection, Stefan flow effect, real gas effect and ambient gas solubility into the liquid droplet in high-pressure conditions. Thermodynamic and transport properties are calculated as functions of temperature and pressure in both phases. Numerical calculations are carried out for several validation cases with the detailed experimental data. Numerical results confirm that this supercritical vaporization model is applicable to the high-pressure conditions encountered in the combustion processes of diesel engine.

  • PDF

Effects of natural convection on the melt/solid interface shape in the HEM process (열교환법 공정에서 고/액 계면의 형태에 미치는 자연대류의 영향)

  • 왕종회;김도현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 1997
  • The change of flow field and the effects of convective heat transfer on the shape and location of melt/crystal interface has been studied during the crystal growth by the heat exchanger method. Although the thermal structure is stable in the crucible, the flow due to the natural convection driven by radial temperature gradient is significant, because the thermal stability is broken by the hemispherical melt/crystal interface shape. The maximum interface deflection with convection is smaller than without and the convective heat transfer should be considered to simulate the heat transfer process of heat exchanger method rigorously.

  • PDF

Numerical Study of Thermal Convection in Horizontal Enclosure with Heat Generating Conducting Body (발열 전도체를 가지는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1080-1085
    • /
    • 2004
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}$ to $10^{6}$. Multi-domain technique is used to handle square-shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

  • PDF

NATURAL CONVECTION OF WATER IN AN INCLINED CAVITY WITH HEAT GENERATION

  • Sundaravadivelu, K.;Kandaswamy, P.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.281-289
    • /
    • 2003
  • The convection of water is investigated in the vicinity of its density maximum temperature (277 K) in an inclined square cavity in the presence of heat sources. Numerical investigations are carried out by maintaining one of the vertical walls uniformly at 273 K and varying the other wall between temperatures 275 K and 285 K at different inclinations angles. The isotherms, streamlines and velocity profiles reveal the possible existence of multicellular fluid motions, and bidirectional velocity distributions. These fluid flow and heat transfer characteristics are significantly modified by the cavity inclination in the presence of heat sources.

NATURAL CONVECTION AROUND A HEAT CONDUCTING AND GENERATING SOLID BODY INSIDE A SQUARE ENCLOSURE WITH DIFFERENT THERMAL BOUNDARIES

  • NITHYADEVI, NAGARAJAN;UMADEVI, PERIYASAMY
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.459-479
    • /
    • 2015
  • Two-dimensional steady laminar natural convection around a heat conducting and generating solid body inside a square enclosure with different thermal boundaries is performed. The mathematical model is governed by the coupled equation of mass, momentum and energy. These equations are discretized by finite volume method with power-law scheme and solved numerically by SIMPLE algorithm with under-relaxation technique. Effect of Rayleigh number, temperature difference ratio of solid-fluid, aspect ratio of solid-enclosure and the thermal conductivity ratio of solid-fluid are investigated numerically for Pr = 0.7. The flow and heat transfer aspects are demonstrated in the form of streamlines and isotherms respectively.

A Study on the Conjugate Heat Transfer from Horizontal Plate with Protruding Heat Source (열원이 부착된 수평 평판에서 복합 열전달에 관한 연구)

  • 김병철;주동인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.512-518
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.