• 제목/요약/키워드: natural convection model

검색결과 195건 처리시간 0.029초

사각 채널 내에서 열원이 부착된 수평 평판에서 자연대류의 수치해석 (A Numerical Analysis on the Natural Convect ion of the Square Channel inner from the Horizontal Plate with Protruding Heat Source)

  • 김병철;주동인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.487-490
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

  • PDF

발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (A Numerical Study of Natural Convection in a Horizontal Enclosure with Heat-Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1177-1182
    • /
    • 2004
  • The physical model considered here is a horizontal layer of fluid heated below and cooldabove with a heat-generating conducting body placed at the center of the layer. The body genrates a constant amount of heat as initial condition. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for various of Rayleigh number from $10^3$ to $10^6$. Multi-domain Technique is used to handle heat-generating conducting body. The results for the case of heat-generating body are also compared to those of adaibatic body.

  • PDF

발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

수치해석을 이용한 마스트집합체 내 핵연료 집합체의 열수력적 안전성 연구 (Numerical study on the thermal-hydraulic safety of the fuel assembly in the Mast assembly)

  • 김영수;윤병조;김휘융;전재영
    • 에너지공학
    • /
    • 제24권1호
    • /
    • pp.149-163
    • /
    • 2015
  • 본 연구에서는 전산유체역학(Computational Fluid Dynamics, CFD) 해석코드를 사용하여 마스트집합체의 열수력적 안전성에 대한 연구를 수행하였다. 이를 위해 자연대류 벤치마크 문제를 선정하여 CFD 코드의 물리모델을 선정 및 해석 능력을 검증하고 이를 이용하여 마스트집합체에 대한 자연대류 열전달 해석을 수행하였다. 본 연구에서는 Betts et al.의 사각 수직공동에서 난류 자연대류 실험결과를 대상으로 CFD 해석을 수행하여 자연대류 조건에 적용하기 위한 난류 모델로 표준 $k-{\omega}$ 모델을 선정하였다. 이렇게 도출된 난류모델을 CFD코드에 적용하여 Bates et al.에 의해 수행된 PNL(Pacific Northwest Laboratory)의 $2{\times}6$ 번들 실험과 이에 대한 Kwon et al.의 MATRA, Fluent 코드의 해석과 비교 계산을 수행하여 CFD코드의 부수로조건 자연대류 열전달 해석 능력을 검증하였다. 최종적으로 도출된 $k-{\omega}$ 난류 모델을 사용하여 마스트집합체 및 핵연료 집합체에 대한 자연대류 해석을 수행하였다. 해석 결과 수조 내부 및 부수로 내에서 안정적인 자연대류 유동이 발생함을 확인하였으며, 본 유동 조건에서 핵비등이탈비를 계산함으로써 열수력적 안전성을 정량적으로 평가하였다.

밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구 (A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure)

  • 추병길;조성곤
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구 (A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions)

  • 김태국;민동호;한규익;손봉세;서석호
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.

멤브레인형 LNG 수송선 코파담내의 난류 자연대류 (The Turbulent Natural Convection in Membrane Type LNG Carrier Cofferdam)

  • 정한식;정효민;김경근;노승탁
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.281-287
    • /
    • 1999
  • The turbulent natural convection in the membrane type LNG carrier cofferdam with heating points has been studied by numerical method. As the numerical methods, we introduced the three turbulence model, a standard $k-{\varepsilon}$ model and two case of a low Reynolds number models. The parameters considered for this study ore number and capacity of heating points i.e., $1{\leq}Ns{\leq}12$ and $1.0{\times}10^5{\leq}Qs(W/m^3){\leq}1.0{\times}10^8$. The results of the isotherms and velocity vectors have been represented for various parameters. The temperature and velocity at upper position in the space ore shown to be higher than those at lower position. For obtaining the optimal temperatures, $20{\sim}30^{\circ}C$ in the cofferdam space, the heating capacities show $2.0{\times}10^7W/m^3$ at g-heating points and $1.0{\times}10^7W/m^3$ at 12-points. The mean temperature in the cofferdam space can be expressed as a function of number and capacity of heating points.

107의 Rayleigh 수에서 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구 (Numerical Study of Natural Convection in a Square Enclosure with an Inner Circular Cylinder for Rayleigh Number of 107)

  • 유동훈;윤현식;하만영
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.739-747
    • /
    • 2010
  • 고온의 내부 원형 실린더가 존재하는 저온의 사각 밀폐계 사이의 온도차이에 의해 발생하는 자연대류에 관해 수치해석을 수행하였다. 본 연구는 내부의 원형 실린더를 표현하기 위해 유한 체적법에 기초한 가상 경계법을 사용하여 Ra = $10^7$ 에서 2 차원 비정상상태의 자연대류 현상에 대한 해를 얻었다. 더욱이 밀폐계의 수직 중심선에 따른 내부 원형 실린더의 위치 변화에 의한 열전달과 유동에 관한 영향을 연구하였다. 내부원형 실린더의 위치 변화에 따라 자연대류 현상은 비정상상태에서 정상상태로 변화 되었다. 연구 결과 두가지의 임계 위치를 얻을 수 있었다. 하부 경계는 0.05 인 지점이고 상부경계는 0.18 인 지점이다. 하부 경계와 상부 경계의 사이의 위치에서는 열 및 유동장이 정상상태임을 알 수 있었다.

Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향 (Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process)

  • 문승재;노승탁
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.