• Title/Summary/Keyword: natural convection instability

Search Result 28, Processing Time 0.027 seconds

Effects of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration

  • Youm, Kyung-Ho;Anthony G. Fane
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.6-10
    • /
    • 1995
  • An inevitable problem feature of membrane processing is concentration polarization (CF) which is a result of the accumulation of retained solutes at the membrane surface. In ultrafiltration (UF), this accumulation can lead to fouling due to the irreversible deposition of macromolecules both at the membrane surface and in the membrane pores. To reduce or control CP and folding, many possible methods have been considered [1]. One of the most effective approaches is to induce fluid instability near the membrane surface by using pusation flow [2, 3], Taylor [4] and Dean [5, 6] vortex flows. Winzeler and Belfort [6] have comprehensively reviewed several possible attempts to use fluid instabihties for improved membrane performance.

  • PDF

Numerical Simulation of Thermal Lattice Boltzmann Model with a Modified In-Ternal Energy Non-Equilibrium First-Order Extrapolation Boundary Condition (수정된 내부 에너지 비평형 1차 외삽 경계조건을 적용한 열 유동 격자 볼츠만 모델에 관한 수치적 연구)

  • Jeong, Hae-Kwon;Kim, Lae-Sung;Lee, Hyun-Goo;Lee, Jae-Ryong;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.620-627
    • /
    • 2007
  • In this paper, we adapt a modified internal energy non-equilibrium first-order extrapolation thermal boundary condition to the thermal lattice Boltzmann model (TLBM). This model is the double populations approach to simulate hydrodynamic and thermal fields. The bounce-back boundary condition which is a traditional boundary condition of lattice Boltzmann method has only a first order in numerical accuracy at the boundary and numerical instability. A non-equilibrium first-order extrapolation boundary condition has been verified to be of better numerical stability than the bounce-back boundary condition and this boundary condition is proved to be of second-order accuracy for the flat boundaries. The two-dimensional natural convection flow in a square cavity with Pr=0.71 and various Rayleigh numbers are simulated. The results are found to be in good agreement with those of previous studies.

A Study on the Characteristic of Flow and Burnout in a Boiling Annulus (Part 2, Case of Natural Convection) (불등이중관에 있어서의 유동특성과 번아우트 (제3보, 자연대유의 경우))

  • 조용철
    • Journal of the KSME
    • /
    • v.16 no.2
    • /
    • pp.84-91
    • /
    • 1976
  • An experimental investigation of the natural circulating boiling flow characteristic in three cases of annulus with different outer diameter, and the effect of annular gap size on the burnout behavior is presented. The experimental work was conducted for each case of test section at system pressure of $1kg/cm^2$ and inlet subcooling $0-20^{\circ}C$ in the full range of throttling ratio. As the result, the following facts were found. 1) With the increase of ${\Delta}T_{sub}$, $D_{2}$ and A/A_{o}$, $q_{BO}$ increases on the whole, and with the decrease of ${\Delta}T_{sub}$ and $D_{2}$, hydrodynamic instability is accelerated to happen prematually. 2)With the increase of ${\Delta}T_{sub}$, $D_{2}$ and A/A_{o}$ burnout characteristic shows the high velocitylow quality burnout, and with the decrease, low-velocity-high quality burnout. 3)With the decrease of A/A_{o}$, hyddrodynamic instability is singnificantly restrained and the difference of $q_{BO}$ in each $D_2$ under same condition is gradually reduced, finally converging into $1.9{\times}10^{5}kcal/m^{2}-hr$.

  • PDF

Vortex Instability and Heat Transfer Correlations in the Natural Convection Flow over Inclined Isothermal flat Plates (경사진 등온 평판위 의 자연대류 유동 에서의 와류 불안정성 과 열전달 상관관계)

  • 최창균;유정열;이형인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 1984
  • The critical conditions marking the onset of thermally induced vortices over an inclined iso-thermal plate are investigated using the linear stability theory. The stability equations are simplified by estimating the orders of magnitude of respective terms. The analysis is carried out under the assumption that for the system of large Prandtl numbers temperature disturbances are initiated within the conventional thermal boundary layer of the basic flow. The stability criteria obtained from the present results agree well with those of the existing quasi-parallel flow models. In addition it is found that the critical conditions generate the heat transfer correlation in good agreement with experiments. Therefore, it is suggested that the validity of existing theoretical models will be reexamined.

The Onset of Natural Convection and Heat Transfer Correlation in Horizontal Fluid Layer Heated Uniformly from Below

  • Kim, Min-Chan;Kim, Sin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1451-1460
    • /
    • 2001
  • The critical condition of the onset of buoyancy-driven convective motion of uniformly heated horizontal fluid layer was analysed by the propagation theory which transforms the disturbance quantities similarly. The dimensionless critical time, $\tau$$\sub$c/, is obtained as a function of the Rayleigh number and the Prandtl number. Based on the stability criteria and the boundary-layer instability model, a new heat transfer correlation which can cover whole range of Rayleigh number was derived. Our theoretical results predict the experimental results quite reasonably.

  • PDF

Effects of Natural Convection Instability on Membrane Fouling Control in Ultrafiltration (한외여과에서 자연대류 불안정성의 막오염 제어 효과)

  • 김태곤;염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • 1. 서론 : 한외여과(ultrafiltration; UF)는 장치 및 조작이 간단하고, 열의 사용없이 물질을 분리 정제를 할 수 있기 때문에 생물제품 등을 비롯한 거대분자들의 분리에 널리 활용되고 있다. 그러나 한외여과 공정의 운전시 가장 큰 문제점은 막에 의해 분리된 물질들이 필연적으로 막표면에 가역적으로 누적되는 농도분극(concentration polarization)과 이 누적된 물질이 막과의 상호작용에 의해 막표면에 비가역적으로 침적되는 막오염(membrane fouling)현상을 유발시킨다는 것이다. 일반적으로 한외여과는 막세공과 분리 대상물의 크기차에 의한 sieve effect에 의해 분리가 이루어지는데 막오염이 발생되면 세공의 일부 또는 전체가 막히게 되어 결국에는 투과선속(permeate flux)이 감소하고, 막의 세공분포가 달라져 막 본래의 분리성능에 변화가 초래된다.(생략)

  • PDF

Instability and Transition of Nonparallel Bouyancy-Induced Flows Adjacent to an Ice Surface Melting in Water (얼음 벽면의 융해율을 고려한 비평행 자연대류에서 유동의 불안정성과 천이에 관한 연구)

  • Hwang, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.437-450
    • /
    • 1996
  • A set of stability equations is formulated for natural convection flows adjacent to a vertical isothermal surface melting in cold pure water. It takes account of the nonparallelism of the base flows. The melting rate is regarded as a blowing velocity at the ice surface. The numerical solutions of the linear stability equations which constitute a two-point boundary value problem are accurately obtained for various values of the density extremum parameter $R=(T_m-T_{\infty})/(T_0-T_{\infty})$ in the range $0.3{\leq}R{\leq}0.6$, by using a computer code COLNEW. The blowing effects on the base flow becomes more significant as ambient temperature ($T_{\infty}$) increases to $T_{\infty}=10^{\circ}C$. The maximum decrease of heat transfer rate is about 6.4 percent. The stability results show that the melting at surface causes the critical Grashof number $G^*$ and the maximum frequency of disturbances to decrease. In comparision with the results for the conventional parallel flow model, the nonparallel flow model has a higher critical Grashof number but has lower amplification rates of disturbances than does the parallel flow model. The spatial amplification contours exhibit that the selective frequency $B_0$ of the nonparallel flow model is higher than that of the parallel flow model and that the effects of melting are rather small. The present study also indicates that the selective frequency $B_0$ can be easily predicted by the value of the frequency parameter $B^*$ at $G^*$, which comes from the neutral stability results of the nonparallel flow model.

  • PDF

Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization (실험과 수치해석을 통한 동토지반 안정화용 수직형 열사이펀의 성능평가)

  • Lee, Jangguen;Lee, Chulho;Jang, Changkyu;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.45-56
    • /
    • 2014
  • Frozen ground in cold region consists of an upper active layer and lower permafrost which is permanently frozen land. During the summer season, the air temperature is high enough to make the frozen ground melt, which causes the reduction of soil strength and thaw settlement. These phenomena result in structural instability, so it is necessary to apply frozen ground stability techniques. Thermosyphon is a closed natural two-phase convection device to maintain the ground temperature below $0^{\circ}C$ by extracting heat from the ground and discharges it into the atmosphere. Experimental and numerical investigation has been performed to estimate the effect of the refrigerant filling ratio in thermosyphon using R-134a refrigerant and the thermal conductance of the thermosyphon.