• 제목/요약/키워드: natural convection

검색결과 848건 처리시간 0.026초

ρ-알루미나결합 알루미나 캐스터블의 용융슬래그에 의한 침식기구 (Kinetics and Mechanism of Corrosion of ρ-alumina Bonded Alumina Castable by Molten Slag)

  • 천승호;전병세
    • 한국세라믹학회지
    • /
    • 제40권10호
    • /
    • pp.1015-1020
    • /
    • 2003
  • $\rho$-알루미나 결합 진동성형용 알루미나 캐스터블 내화물의 매트릭스부분과 용응 슬래그와의 침식거동을 젭센(Jabsen)이 주장한 이론을 기초로 하고 킹거리(Kingery)가 제안한 반응 기구를 통해 규명하였다. 매트릭스 부분의 초기침식이 분자확산거동에 의하여 지배되며, 아레니우스 관계식과 잘 일치하고 있어 온도의존성 활성화 과정으로 받아들 수 있다. 슬래그와 경계층의 Ca 농도차이가 23.2%로서 경계층을 형성하기 위한 물질이동의 구동력이 되었다. 매트릭스의 침식정도가 뮬라이트 소결체보다 심하지만 킹거리의 침식반응 기구와 잘 일치하고 있어 캐스터블의 수명예측이 가능하다.

연성해석을 이용한 초고압 모선부 온도 상승 예측 기술 (An Estimation Technology of Temperature Rise in GIS Bus Bar using Three-Dimensional Coupled-Field Multiphysics)

  • 윤정훈;안희섭;최종웅;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.675-676
    • /
    • 2006
  • This paper shows the temperature rise of the high voltage GIS bus bar. The temperature rise in GIS bus bar is due to Joule's losses in the conductor and the induced eddy current in the tank. The power losses of a bus bar calculated from the magnetic field analysis are used as the input data for the thermal analysis to predict the temperature. The required analysis is a couple-field Multiphysics that accounts for the interactions between three-dimensional AC harmonic magnetic and fluid fields. The heat transfer calculation using the fluid analysis is done by considering the natural convection and the radiation from the tank to the atmosphere. Consequently, because temperature distributions by couple-field Multiphysics (coupled magnetic-fluid) have good agreement with results of temperature rise test, the proposed couple-field Multiphysics technique is likely to be used in a conduction design of the single-pole and three pole-encapsulated bus bar in CIS..

  • PDF

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

T-history법에 의한 저온 PCM 잠열측정의 정밀도 향상 (Improving the Precision for the T-history Method for Latent Heat Measurements of Low Melting Temperature PCMs)

  • 이윤석;백종현;강채동;홍희기
    • 설비공학논문집
    • /
    • 제17권3호
    • /
    • pp.223-231
    • /
    • 2005
  • When test tubes for PCM with melting point lower than a room temperature are installed vertically as the T-history method proposes, there exists a temperature distribution in the longitudinal direction by natural convection, which lowers the precision of measured heat-of-fusion. The purpose of the present work is to improve the precision by arranging the test tubes horizontally, while maintaining the simplicity and convenience. Assuming that the amount of heat transfer is very small through the vapor space formed in the upper part of the tubes by volumetric change, the obtained value by the T-history method using the latent heat period bounded by two inflection points is in good agreement with that of the literature. Also, the scattering of measured values by the proposed method decreases markedly compared to that of vertical positioning.

제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구 (A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure)

  • 황인주;김윤제
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

Coolant Material Effect on the Heat Transfer Rates of the Molten Metal Pool with Solidification

  • Cho, Jae-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Snag-Baik
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.812-817
    • /
    • 1998
  • Experimental studies on heat transfer and solidification of the molten metal pool with overlying coolant with boiling were performed The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water and R113 are used as the working coolant. This work examines the crust formation and the heat transfer characteristics of the molten metal pool immersed in the boiling coolant. The Nusselt number and the Rayleigh number in the molten metal Pool region of this study are compared between the water coolant case and the R113 coolant case. The experimental results or the water coolant are higher than those for R113. Also, the empirical relationship of the Nusselt number and the Rayleigh number is compared with the literature correlations measure from mercury. The present experimental results are higher than the literature correlations. It is believed that this discrepancy is caused by the effect of heat loss to the environment on the natural convection heat transfer in the molten pool.

  • PDF

원형 및 사각단면을 가지는 수평캡슐에서의 접촉용해에 관한 실험적 연구 (An Experimental Study on Close-Contact Melting in Horizontal Capsules with Circular or Rectangular Cross Sections)

  • 김시범;이치우
    • 태양에너지
    • /
    • 제13권1호
    • /
    • pp.39-48
    • /
    • 1993
  • 본 연구는 원 및 여러가지 종횡비의 사각단면을 가지는 수평캡슐에서의 접촉융해에서 융해현상의 진행모습, 융해율 및 상부에서의 자연대류의 정성적인 경향을 고찰한 실험적 연구이다. 본 연구의 결과 Stefan수에 따라서 융해율이 증가하며, 동일한 단면적의 경우 원보다는 사각단면의 경우에 융해율이 크고, 사각단면의 경우에는 종횡비가 작을수록 융해율이 커짐을 알 수 있다. Stefan수가 각각 0.0772, 0.1287 및 0.1802일 때 원통캡슐의 경우 상부에서 자연대류가 융해율에 미치는 영향은 각각 6.1%, 8.6% 및 11.2%이다.

  • PDF

수평원통관 내에서 용융이 일어날 때의 열전달특성 (Heat Transfer Characteristics for Inward Melting in a Horizontal Cylinder)

  • 염성배;홍창식
    • 태양에너지
    • /
    • 제10권2호
    • /
    • pp.44-58
    • /
    • 1990
  • 본 연구에서는 파라핀을 채운 수평 원관의 관벽을 가열하여 축열할 때에 관내에서 일어나는 열전달현상을 다루었다. 용융이 진행됨에 따라 고액 밀도차에 의해서 고상이 아래로 가라앉는 침강형을 대상으로 하여 고상 윗부분의 액상에서는 자연대류를 고려한 열전달모델을 세우고, 고상의 하부와 관벽 사이의 액막에서는 중력과 부력 그리고 액막 내의 압력에 의한 힘간의 평형관계를 이용하여 액막 내에서의 열전도모델을 세워 이를 수치모사하여 이론적으로 해석하였다. 그리고 실제 실험에 의하여 시간에 따른 용융형태를 사진으로 기록하여 이를 분석함으로써 용융량을 구하였고 유동장을 가시화하여 이론적 결과와 비교하였다. 실험에서 얻은 전체 용융량을 상부액상과 하부액막에서 녹은 양으로 구분하여 용융이 진행됨에 따른 각 부분에서의 용융속도 변화를 알아보았다.

  • PDF

상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구 (The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material)

  • 김준근;임장순
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF