• Title/Summary/Keyword: natural constants

Search Result 226, Processing Time 0.023 seconds

System identification of highway bridges from ambient vibration using subspace stochastic realization theories

  • Ali, Md. Rajab;Okabayashi, Takatoshi
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.189-206
    • /
    • 2011
  • In this study, the subspace stochastic realization theories (SSR model I and SSR model II) have been applied to a real bridge for estimating its dynamic characteristics (natural frequencies, damping constants, and vibration modes) under ambient vibration. A numerical simulation is carried out for an arch-type steel truss bridge using a white noise excitation. The estimates obtained from this simulation are compared with those obtained from the Finite Element (FE) analysis, demonstrating good agreement and clarifying the excellent performance of this method in estimating the structural dynamic characteristics. Subsequently, these methods are applied to the vibration induced by both strong and weak winds as obtained by remote monitoring of the Kabashima bridge (an arch-type steel truss bridge of length 136 m, and situated in Nagasaki city). The results obtained with this experimental data reveal that more accurate estimates are obtained when strong wind vibration data is used. In contrast, the vibration data obtained from weak wind provides accurate estimates at lower frequencies, and inaccurate accuracy for higher modes of vibration that do not get excited by the wind of lower intensity. On the basis of the identified results obtained using both simulated data and monitored data from a real bridge, it is determined that the SSR model II realizes more accurate results than the SSR model I. In general, the approach investigated in this study is found to provide acceptable estimates of the dynamic characteristics of highway bridges as well as for the vibration monitoring of bridges.

Pharmaceutical Studies on Chitosan Matrix: Controlled release of aspirin from chitosan device

  • Lee, Chi-Young;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.88-93
    • /
    • 1987
  • Chitosan ($\beta$-D-glucosaminan) is chemically prepared from chitin (N-acetyl-$\beta$- D-glucosaminan) which is an unutilized natural resource. We now report on the suitability of the chitosan matrix for use as vehicles for the controlled release of drugs. Salicylic acid and aspirin were used as model drugs in this study. The permeation of salicylic acid in the chitosan membranes was determined in a glass diffusion cell with two compartments of equal volume. Drug release studies on the devices were conducted in a beaker containing 5% sodium hydroxide solution. Partition coefficient (Kd) value for acetate membrane (472) is much greater than that for fluoro-perchlorate chitosan membrane (282). Higher Kd value for acetate chitosan membrane appears to be inconsisstent with the bulk salicylic acid concentration. The permeability constants of fluoro-perchlorate and acetate chisotan membranes for salicylic acid were 3.139 ${\times}10^{-7}cm^2$ min up to 60 min and that of 30% aspirin in the devices was 4.739${\times}10^{-7}cm^2$sec upto 60 min. As the loading dose of aspirin in a chitosan device increased, water up-take of chitosan device increased, but in case of salicylic acid it decreased. The release rate increased with increase in the molecular volume of the drugs. Thses result suggest that the release mechanism may be controlled mainly by diffusion through pores.

  • PDF

Dehydrogenation of Ethylalcohol Catalyzed by Alcoholdehydrogenase Under High Pressure

  • Jee Jong-Gi;Shin Jin-Young;Hwang Jung-Ui
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.50-57
    • /
    • 1989
  • A pressure effect of the dehydrogenation of ethylalcohol catalyzed by alcoholdehydrogenase was observed in Tris-HCl buffer, pH 8.8 from $25^{\circ}C$ to $35^{\circ}C$ under high pressure system by using our new theory. The theory makes it possible for us to obtain all rate and equilibrium constants for each step of all enzymatic reaction with a single intermediate. We had enthalpy and volume profiles of the dehydrogenation to suggest a detail and reasonable mechanism of the reaction. In these profiles, both enthalpy and entropy of the reaction are positive and their values decrease with enhancing pressure. It means that the first step is endothermic reaction, and its strength decrease with elevating pressure. At the same time, all activation entropies have large negative values, which prove that not only a ternary complex has a more ordered structure at transition state, but also water molecules make a iceberg close by the activated complex. In addition to this fact, the first and second step equilibrium states are controlled by enthalpy. The first step kinetic state is controlled by enthalpy but the second step kinetic state is controlled by entropy.

Synthesis and Characterization of 1,4-Diimine Complexes of 1,2,3,4,5-Pentamethylcyclopentadienylrhodium and iridium

  • Paek, Cheol-Ki;Ko, Jae-Jung;Uhm, Jae-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.980-984
    • /
    • 1994
  • Monomeric rhodium and iridium diimine complexes $Cp^*M(HNRNH)(Cp^*$ = 1,2,3,4,5-pentamethylcyclopentadienyl : (M=lr; R=o-$C_6H_4 (1a), 4,5-(CH_3)_2-C_6H_2-1,2 (1b), 4,5-(Cl)_2-C_6H_2-1,2$ (1c), NCC=CCN-1,2 (1d): M=Rh; R=NCC=CCN-1,2 (1e)) have been synthesized from $[CP^*MCl_2]_2$ and 2 equiv. of diamine in the presence of $NEt_3$. The Crystal structure of 1a was determined by X-ray diffraction method : 1a was crystallized in the monoclinic system, space group $P2_{1/c}$, with lattice constants a=9.543 (1) ${\AA}$, b=16.286 (1) ${\AA}$, c=10.068 (1) ${\AA}$ and ${\beta}$=99.25 (1), with Z= 4. Least-squares refinement of the structure led to R factor of 0.049. The coordination sphere of rhodium and iridium can be described as a 2-legged piano-stool. All complexes are highly colored. Electrochemical studies show that 1d and 1e display quasi-reversible reduction and 1a-1c display irreversible reductions, suggesting that the acceptor orbital might be localized on the diimine ring.

The Energy Flow and Mineral Cycles in a Zoysia japonica and a Miscanthus sinensis Ecosystem on Mt. Kwanak 8. The Cycles of Sulphur (관악산의 잔디와 억새 생태계에 있어서 에너지 흐름과 무기물의 순환 8.황의 순환)

  • 강경미;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.4
    • /
    • pp.281-288
    • /
    • 1997
  • This study was performed to find out the mineral cycles of sulphur in dynamic grassland ecosystems in a steady state condition at the northwest side on Mt. Kwanak. The experimental results may be summarized on the communities of a Zoysia japonica and a Miscanthus sinensis as follows. As compared with some properties of the surface soils among two semi-natural grasslands, sulphur war greater quantity in a Miscanthus sinensis than in a Zoysia japonica on Mt. Kwanak . For the case of steady production and release, the raion of annual mineral production to the amount accumulated on the top of mineral soil in a steady state provides the estimates of release constant k. The release constants on sulphur of the litter were 0.54 in a Zoysia japonica and 0.36 in a Miscanthus sinensis grassland. The half times of S required for the release or accumulation of the litter on the grassland were 1.28 years in a Zoysia japonica and 1.93 years in a Miscauthus sinensis The amounts of annual cycles for sulphur in the grassland ecosystem under the steady-state conditions were 20.65g /$m^2$ in a Zoysia japonica and 26.28g /$m^2$ in a Miacanthus sinensis grassland. Key words: Zoysia japonica Miscanthus sinensis Mt. Kwanak, Sulphur, Mineral cycles.

  • PDF

Extraction of Caffeine from Spent Coffee Grounds and Oxidative Degradation of Caffeine (커피 찌꺼기의 카페인 용출 및 산화분해 특성)

  • Shin, MinJeong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1205-1214
    • /
    • 2018
  • During the past few decades, significant increase in the consumption of coffee has led to rapid increase in the production of coffee waste in South Korea. Spent coffee waste is often treated as a general waste and is directly disposed without the necessary treatment. Spent Coffee Grounds (SCGs) can release several organic contaminants, including caffeine. In this study, leaching tests were conducted for SCGs and oxidative degradation of caffeine were also conducted. The tested SCGs contained approximately 4.4 mg caffeine per gram of coffee waste. Results from the leaching tests show that approximately 90% of the caffeine can be extracted at each step during sequential extraction. Advanced oxidation methods for the degradation of caffeine, such as $UV/H_2O_2$, photo-Fenton reaction, and $UV/O_3$, were tested. UV radiation has a limited effect on the degradation of caffeine. In particular, UV-A and UV-B radiations present in sunlight cause marginal degradation, thereby indicating that natural degradation of caffeine is minimal. However, $O_3$ can cause rapid degradation of caffeine, and the values of pseudo-first order rate constants were found to be ranging from $0.817min^{-1}$ to $1.506min^{-1}$ when the ozone generation rate was $37.1g/m^3$. Additionally, the degradation rate of caffeine is dependent on the wavelength of irradiation.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.699-710
    • /
    • 2022
  • This work presents a comprehensive study on the surface energy effect on the axial frequency analyses of AFGM nanorods in cylindrical coordinates. The AFGM nanorods are considered to be thin, relatively thick, and thick. In thin nanorods, effects of the inertia of lateral motions and the shear stiffness are ignored; in relatively thick nanorods, only the first one is considered; and in thick nanorods, both of them are considered in the kinetic energy and the strain energy of the nanorod, respectively. The surface elasticity theory which includes three surface parameters called surface density, surface stress, and surface Lame constants, is implemented to consider the size effect. The power-law form is considered for variation of the material properties through the axial direction. Hamilton's principle is used to derive the governing equations and boundary conditions. Due to considering the surface stress, the governing equation and boundary condition become inhomogeneous. After homogenization of them using an appropriate change of variable, axial natural frequencies are calculated implementing harmonic differential quadrature (HDQ) method. Comprehensive results including effects of geometric parameters and various material properties are presented for a wide range of boundary condition types. It is believed that this study is a comprehensive one that can help posterities for design and manufacturing of nano-electro-mechanical systems.

ELASTIC CONSTANTS, SHEAR BOND STRENGTH OF TUNNEL RESTORATIVE MATERIALS AND MARGINAL RIDGE STRENGTH OF RESTORED TEETH (터널형 2급와동 충전재의 탄성계수와 전단결합강도 및 수복치의 변연융선 파절강도에 관한 연구)

  • Lee, Ka-Yean;Park, Yeong-Joon;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.746-763
    • /
    • 1996
  • An alternative design to conventional class II cavity preparation for proximal carious lesions is the tunnel preparation. It preserves the marginal ridge intact, thus making it possible to maintain the natural contact relationship with the adjacent tooth and minimize tooth reduction. This in vitro study was purposed to evaluate the effect of the materials' elastic constants and shear-bond strength on the marginal ridge fracture resistance of teeth restored by the tunnel technique, and to find the materials of choice for tunnel restorations. $Resinomer^{(R)}$, $Ketac-silver^{(R)}$, $Miracle-Mix^{(R)}$, and Tytin were used as restorative material. The elastic constants of each restorative material were evaluated by ultrasonic pulse measurement. Young's modulus and bulk modulus of the restorative materials were evaluated in three specimens for each material type. The shear-bond strength of the restorative materials to the dentin surface was measured after thermocycling 400 times between 6 and $60^{\circ}C$, using ten specimens for each material type. For measuring marginal ridge strength, 60 sound extracted molar teeth were distributed into six groups by size. Sound molar teeth were used as a Control group and unfilled prepared teeth were grouped as Unrestored. Another four groups were named Resinomer group, Ketac-Silver group, Miracle Mix group, and Tytin group by type of restorative material. Tunnel cavity preparation was done with ' 1/2, 2, and 4 round burs in sequence. Initial access to proximal surface was made through an occlusal access preparation started at least 2mm from the marginal ridge, and the proximal opening was formed about 2.5mm below the marginal ridge. After restoration and thermocycling, marginal ridge strength was measured using a universal testing machine. The results were as follows: 1. The Young's modulus of $Tytin^{(R)}$ was 63.95 GPa, followed by $Ketac-Silver^{(R)}$ 27.60 GPa, $Miracle-mix^{(R)}$ 18.48 GPa, and $Resinomer^{(R)}$ 10.74 GPa showing significant differences between the groups(P<0.05). The bulk modulus of the materials showed the same order as Young's modulus. The value of $Tytin^{(R)}$ showed 59.57 GPa indicating that it will deform less than other materials under the same stress. It was followed by $Ketac-Silver^{(R)}$ 23.57 GPa, Miracle $Mix^{(R)}$ 12.50 GPa, and $Resinomer^{(R)}$ 11.60 GPa. 2. The Resinomer group had a shear-bond strength of 7.41 MPa which was significantly higher than those of the Ketac-Silver group (1.80 MPa) and the Miracle Mix group (2.84 MPa) (P<0.01). All the specimens of Tytin group detatched from the dentin surface during thermocycling. 3. The mean marginal ridge strength of the Unrestored group(46.14 kgf) was significantly lower than that of the Control group (84.24 kgf) (P<0.01). The marginal ridge strength of teeth restored by the tunnel technique was, in order, Ketac-Silver group 74.06 kgf, Miracle Mix group 73.36 kgf, Resinomer group 63.47 kgf, and Tytin group 58.76 kgf. The Ketac-Silver, Miracle Mix, and Resinomer groups showed no significant difference with the Control group (P>0.05), but the Tytin group showed significantly lower strength compared to the Control group(P<0.05). The results showed that the marginal ridge strength of the teeth restored by the tunnel technique was not significantly lower than that of sound teeth. They also demonstrated that the bonding strength of the restorative material to the tooth surface should be high and the modulus of elasticity should not be lower than that of the tooth in order to restore the marginal ridge strength to its natural condition.

  • PDF