• Title/Summary/Keyword: natural antimicrobial coating

Search Result 15, Processing Time 0.033 seconds

Effectiveness of Antimicrobial Starch Coating Containing Thyme Oil against Salmonella, Listeria, Campylobacter, and Pseudomonas on Chicken Breast Meat

  • Goswami, Namita;Han, Jung-Hoon;Holley, Richard A.
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.425-431
    • /
    • 2009
  • Antimicrobial coating on chicken carcasses may reduce the effects of cross-contamination and improve product shelf-life and safety. Thyme oil was mixed at 0.5%(v/v) with a pre-gelatinized pea starch coating solution. The coating solution was spread on chicken breast meat after inoculation with selected spoilage and pathogenic bacteria. After inoculation, the chicken meats were packaged in plastic bags and stored at $4^{\circ}C$. During 12 day storage, total aerobic bacteria, lactic acid bacteria, and inoculated organisms were counted at 4 day intervals. Thyme oil treatments reduced the viability of Salmonella as well as the growth of Listeria and Pseudomonas by 2 log CFU/g, and appeared to eliminate inoculated Campylobacter during storage. The addition of thyme oil increased the viscosity of the pre-gelatinized pea starch solution. The results suggested that thyme oil inclusion in an edible starch coating may be a satisfactory delivery system to enhance the safety of processed fresh meat.

Antimicrobial Coating Agent (항균 코팅제)

  • Ko, Jong-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.96-115
    • /
    • 2013
  • This article describes the concept and the trend of antimicrobial coating agents, which will help to establish the direction of the research and development on antimicrobial coating agent. Antimicrobial agents are compounds that inhibit or kill microorganisms. They are classified into inorganic, metallic, low molecular weight organic, natural organic, and polymeric compounds. Antimicrobial coatings are applied to the surface of daily necessities, medical devices, industrial products, electrical appliances, fabrics, and interior building materials, etc. Conventional antibiotics penetrate microbes without damaging bacterial cell walls, leading to drug resistance which polymeric antimicrobials can prevent by disrupting cell walls. Most polymeric antimicrobials are focused on cationic polymers. Improvement in the selectivity and durability of antimicrobials and reduction of their toxicity will come true by more reasonable design of molecular structures and their combination in coating system.

The Effect of Chitosan Coating Combined with Carvacrol and Thymol on Microbial and Quality Characteristics of Litopenaeus vannamei during Cold Storage (Carvacrol과 thymol을 병행처리한 키토산 코팅이 냉장저장 시 흰다리 새우의 미생물 및 품질 특성에 미치는 효과)

  • Ko, Bong Soo;Park, Mi-Jung;Gwak, Seung-Hae;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, we stored frozen shrimp (Litopenaeus vannamei) at $4^{\circ}C$ during 12 days and investigated the effect of chitosan coating with natural preservatives (0.05% carvacrol, 0.05% thymol) on the growth of microorganism (mesophilic bacteria, psychrophilic bacteria, Pseudomonas spp., $H_2S$ producing bacteria) and physiological characteristics (total volatile basic nitrogen and pH) and sensory evaluation (appearance, odor and general acceptance). Chitosan coating with natural antimicrobial compounds (0.05% carvacrol and 0.05% thymol) had inhibited the growth of all the target microorganism and showed the significant antimicrobial activity (p < 0.05) to mesophilic bacteria, psychrophilic bacteria and $H_2S$ producing bacteria until 12 day (the last day of this study). These treated groups had showed the significant difference (p < 0.05) in total volatile basic nitrogen and all the sensory characteristics but not in pH. Therefore, chitosan coating combined with natural antimicrobial compounds (0.05% carvacrol and 0.05% thymol) showed the effective antimicrobial activity on major spoilage microorganism on shrimp and could be used to elongate the shelf life of refrigerated shrimp.

Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States (구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성)

  • Sangwon Ko
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Copper is cost-effective and abundantly available as a biocidal coating agent for a wide range of material surfaces. Natural oxidation does not compromise the efficacy of copper, allowing it to maintain antimicrobial activity under prolonged exposure conditions. Furthermore, copper compounds exhibit a broad spectrum of antimicrobial activity against pathogenic yeast, both enveloped and non-enveloped types of viruses, as well as gram-negative and gram-positive bacteria. Contact killing of copper-coated surfaces causes the denaturation of proteins and damage to the cell membrane, leading to the release of essential components such as nucleotides and cytoplasm. Additionally, redox-active copper generates reactive oxygen species (ROS), which cause permanent cell damage through enzyme deactivation and DNA destruction. Owing to its robust stability, copper has been utilized in diverse forms, such as nanoparticles, ions, composites, and alloys, resulting in the creation of various coating methods. This mini-review describes representative coating processes involving copper ions and copper oxides on various material surfaces, highlighting the antibacterial and antiviral properties associated with different oxidation states of copper.

The Antimicrobial Food Packaging: Application of Antimicrobial Agents in Food Packaging (항균 식품포장: 식품 포장에서의 항균물질의 응용)

  • Cha, Dong-Su;Kweon, Dong-Keon;Park, Hyun-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 2005
  • The term 'antimicrobial' packaging encompasses any packaging technique(s) used to control microbial growth in the food product. These include packaging materials and edible films and coatings that contain antimicrobial agents, and also techniques that modify the atmosphere within the package. In recent years, antimicrobial packaging has attracted much attention from the food industry because of the increase in consumer demand for minimally processed, preservative-free products. Reflecting this demand, the preservative agents must be applied to packaging in such a way that only low levels of preservatives come into contact with the food. The film or coating technique is considered to be more effective, although more complicated to apply. New antimicrobial packaging materials are being developed continually. Many of them exploit natural agents, to control common food-borne microorganisms. Current trends suggest that in due course, packaging will generally incorporate antimicrobial agents and the sealing systems will continue to improve. The focus of packaging in the past has been on the appearance, size and integrity of the package. A greater emphasis on safety features associated with the addition of antimicrobial agents is perhaps the next area for development in packaging technology.

  • PDF

Comparison of Antibacterial Ability of Air Filter Media Treated with a Natural Antibacterial Agent by Three Treatment Methods (항균성 천연물질의 도포방법에 따른 에어필터 여재의 항균 특성 비교)

  • Park, Sun Young;Jung, Jae Hee;Hwang, Gi Byung;Bae, Gwi-Nam;Kim, Yong Pyo;Nho, Chu Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.125-134
    • /
    • 2013
  • Various antimicrobial technologies have been developed to inactivate bioaerosols in indoor environments. In this study, air filter media were treated with a natural antibacterial agent of Sophora flavescens in order to inactivate the bacteria collected on the air filter. Three treatment methods were applied to manufacture the test antibacterial air filter media: electrospray, nebulization and dip-coating methods. In case of electrospray and nebulization processes, the size distribution of aerosolized natural antibacterial agent was measured using a scanning mobility particle sizer. Staphylococcus epidermidis bacteria were aerosolized to test inactivation of the filter media treated with a natural antibacterial agent. The pressure drop and the antibacterial efficiency of the filter media increased with increasing the mass loading of natural antibacterial agent in each treatment method. The antibacterial efficiency per loaded antibacterial agent mass by the electrospray method was the highest and the filter treated by the dip-coating method was the lowest among three treatment methods.

Effect of Antimicrobial Microperforated Film Packaging on Extending Shelf Life of Cluster-type Tomato (Lycopersicon esculentum Mill.) (천연 항균물질 미세천공필름 포장이 송이토마토의 품질에 미치는 영향)

  • Lee, Youn-Suk;Lee, Young-Eun;Lee, Jung-Soo;Kim, Young-Shik
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.447-455
    • /
    • 2011
  • To investigate the effects of the improvement of postharvest quality on fresh tomato, antimicrobial microperforated (AMP) films were prepared and their antimicrobial abilities were observed. AMP films were made by coating different types of natural antimicrobial agents such as cinnamon, clove, and clary sage essential oils into microperforated (MP) films. Cinnamon essential oil of 10% (v/v) has proven to be very effective as inhibitor of the mold growth on tomato, compared to the clove and clary sage essential oils. Quality changes of fresh tomatoes packed using the natural AMP films (AMP10 and AMP30) and MP films (MP10 and MP30) during storage were evaluated. Total microbial growth, weight loss, firmness, lycopene content, and decay rate as the major quality parameters were monitored over 9 days at $15^{\circ}C$. The oxygen transmission rates and mechanical properties between the natural AMP and MP films were also compared. There was no significant difference in change of oxygen transmission rate, tensile strength and elongation between the AMP and MP films. For storage studies, the freshness of tomato packaged in AMP30 film was higher than that in OPP film (the control), MP10, MP30, and AMP10 films. Especially, AMP30 film exhibited high efficiency compared to the control for tomato decay during storage periods. Based on the results, the microperforation and antimicrobial properties of the packaged films may significantly affect the maintenance of an optimum gas composition within the package atmosphere for increasing the storage life and quality of produce. They were also effective on the inhibition of microbial growth by controlled release of antimicrobial agent at an appropriate rate from the package into the tomato. Natural antimicrobial agent coating microperforated films could use potential functional package as a method of extending the freshness of postharvest tomato for storage.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Properties of cold resistance coating fabric treated by natural antimicrobial agent (천연항균제로 처리한 혹한내구성 코팅직물의 특성)

  • Hong, Tae-Il;Gu, Gang;Choe, Jong-Seok;Kim, Yeong-Dal;Park, Jin-Yeong;Gwon, Yeong-Chang;Yu, Jae-Yeong;Jeong, Chang-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.141-143
    • /
    • 2008
  • 극한의 추위를 견디기 위한 내한성 코팅 직물의 개발은 활발히 진행되었으나, 항균성에 대해서는 활발한 개발이 이루어지지 않고 있다. 본 연구는 내한성 코팅 직물에 천연항균제를 처리하여 물성의 변화를 알아보고자 한다. 현재 시판되고 있는 내한성 코팅 수지에 해조류에서 추출한 천연항균제를 처리하여 상용성을 알아보았다. 내한성 코팅수지에 천연항균제를 처리하면, 내한성 코팅 수지의 고유 물성은 유지되면서 항균성이 나타나는 것을 알 수 있었다.

  • PDF

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood (식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향)

  • Baek, Ji Hye;Lee, So-Young;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.205-212
    • /
    • 2020
  • Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.