• Title/Summary/Keyword: natural antimicrobial agents

Search Result 145, Processing Time 0.028 seconds

Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa - Combination therapy against resistant bacteria -

  • Bazzaz, Bibi Sedigheh Fazly;Sarabandi, Sahar;Khameneh, Bahman;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.19 no.4
    • /
    • pp.312-318
    • /
    • 2016
  • Objectives: Bacterial resistant infections have become a global health challenge and threaten the society's health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of $0.312-320{\mu}g/mL$. The MIC values of both types of catechins were $62.5-250{\mu}g/mL$. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance.

Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts

  • Anchalee Rawangkan;Atchariya Yosboonruang;Anong Kiddee;Achiraya Siriphap;Grissana Pook-In;Ratsada Praphasawat;Surasak Saokaew;Acharaporn Duangjai
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1179-1188
    • /
    • 2023
  • Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.

ANTIBIOTICS RESIDUES IN RAW MILK IN THAILAND

  • Amonsin, A.;Saitanu, K.;Teeverapanya, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.27-30
    • /
    • 1996
  • One thousand eight hundreds and twenty two samples of raw milk were detected for antibiotic residues using Bacillus subtilis ATTCC 6633, B. stearothermophilus var. calidolactis C 593 and Micrococcus luteus ATCC 9341 as test organisms, were carried out from July 1991 through June 1992. Apparent antibiotic residues were found through out the study period, except in January. The detection rate varied from 0.7% in March and May to 11% in April. One hundred and thirty six (72%) samples of the 187 screening positive samples were considered to contain only the indigenous antimicrobial agents. Of the total, 51 (2.8%) samples were positive for antibiotic residues. Among the tested organisms, B. stearothermophilus var. calidolactis was the most sensitive organism in detection of the antibiotic residues.

Antibacterial Activity of Acanthoic acid Isolated from Acanthopanax koreanum against Oral and Skin Microfloras

  • Kim, Jin-Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1625-1628
    • /
    • 2006
  • The (-)-pimara-9 (11), 15-dien-19-oic acid, acanthoic acid was extracted from the roots of Acanthopanax koreanum using bioassay-guided isolation of a MeOH extract. Acanthoic acid was assayed against Streptococcus mutans and Staphylococcus epidermidis causing dental caries and opportunistic pathogen. The minimum inhibitory concentration (MIC) of acanthoic acid against Streptococcus mutans and Staphylococcus epidermidis was 2 and 4 ${\mu}g/mL$, respectively, which was much lower than those of other natural antimicrobial agents such as 8 ${\mu}g/mL$ of tanshinone IIA. Acanthoic acid also significantly inhibited the growth of other cariogenic bacteria such as Streptococcus sobrinus and Streptococcus sanguis, and Streptococcus grodenii in the MIC range of 4${\sim}$32 ${\mu}g/mL$. Our findings suggest that acanthoic acid could be employed as a potential antibacterial agent for preventing dental caries and skin infections.

One-step phyto-mediated fabrication of silver nanoparticles and its anti-microbial properties

  • Velmurugan Palanivel;Sung-Chul Hong;Veera Ravi Arumugam;Sivakumar Subpiramaniyam;Pyong-In Yi;Seong-Ho Jang;Jeong-Min Suh;Eun-Sang Jung;Je-Sung Park
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.391-397
    • /
    • 2023
  • This manuscript describes the one-step eco-friendly green fabrication of silver nanoparticles (AgNPs) through the in-situ bio-reduction of an aqueous solution of silver nitrate using Syzygium aromaticum leaf extract. UV-vis spectroscopy shows a characteristic SPR peak around 442 nm. FTIR spectroscopy showed that the AgNPs were capped with bioactive phyto-molecules. TEM images revealed oval and spherical particles with a mean diameter of ~12.6 nm. XRD analysis revealed crystalline and face-cantered cubic AgNPs. The phytosynthesized AgNPs showed broad-spectrum anti-microbial activity against two foodborne pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The AgNPs showed a prominent ability to inhibit biofilms formed by L. monocytogenes and S. aureus in laboratory conditions through a crystal violet assay. The results suggest that the AgNPs could be a novel nanotool to develop effective antimicrobial and anti-biofilm agents in food preservation.

Antioxidant and Antimicrobial Effects of Lemon and Eucalyptus Essential Oils against Skin Floras (레몬 및 유칼립투스 에센셜오일의 피부 상재균에 대한 항산화 및 항균 효과)

  • Kim, Ji-Hye;Kim, Min-Jung;Choi, Su-Ki;Bae, Seung-Hee;An, Sung-Kwan;Yoon, Yeong-Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.4
    • /
    • pp.303-308
    • /
    • 2011
  • Lemon and eucalyptus oils were known to have various biological effects such as anti-aging and sterilizing action. However these essential oils were not well studied about their antioxidant activity and antimicrobial activity against specific skin flora. In this study, we investigated antioxidant activity and antimicrobial activity of lemon and eucalyptus oils by using DPPH radical scavening activity and paper disc method. Lemon oil showed the high DPPH scavenging activity, while eucalyptus oil did not. Blending oils of lemon and eucalyptus had little enhancememt onantioxidant activity. Paper disc method demonstrated that each oil had a high antimicrobial effect against C. albicans and P. acnes in a concentration dependent manner. The blending oils had enhancememt on antimicrobial effect against P. acnes. In conclusion, the blending oil of lemon and eucalyptus can be used as a more effective natural agents for cure of skin trouble and acne.

Antioxidant and Antimicrobial Activities of Fruiting Bodies of Phellinus gilvus Collected in Korea (국내에서 수집된 마른진흙버섯 자실체의 항산화 및 항균 효과)

  • Yoon, Ki-Nam;Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • This study was initiated to evaluate the antioxidant and antimicrobial activities of methanol extract (ME) and hot water extract (HWE) obtained from the fruiting bodies of medicinal mushroom, Phellinus gilvus. The free radical scavenging activity of ME from P. gilvus on 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 93.65% at 2 mg/mL, which was comparable with the positive control, butylated hydroxytoluene (BHT, 96.97%) at the same concentration. The ferrous ion-chelating ability of ME and HWE was significantly higher than that of BHT at all concentration levels. The antimicrobial assay of ME was performed against six bacteria and one species of fungus. ME exhibited antibacterial activity against 5 out of 6 bacteria: Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa; whereas, ME did not show antimicrobial activity against gram-negative bacterium Vibrio vulnificus and fungal species Candida albicans. The minimum inhibitory concentration (MIC) of ME against 5 strains of bacteria, such as S. aureus, S. mutans, B. subtilis, E. coli, and P. aeruginosa, was 100, 100, 50, 100, 200 mg/mL, respectively. The results suggest that good antioxidant and microbial activities of P. gilvus fruiting bodies might be used for natural antioxidant and antimicrobial agents.

Effect of Botanical Antimicrobial Agent-Citrus Products on the Quality Characteristics during Kimchi Fermentation (식물성 천연항균소재를 첨가한 김치의 숙성 중 품질변화)

  • Cho Sung-Hwan;Lee Seung-Gheol;Park Wan-Soo
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2005
  • To develop natural antimicrobial agents for extending the self-life of Kimchi, the effect of botanical antimicrobial agent-citrus products(BAAC) on microorganisms related to Kimchi spoilage was investigated. The inhibitory effect of BAAC on microorganisms related to Kimchi spoilage was increased according to the concentration of BAAC. Antimicrobial activities of BAAC against microoiganisms related to Kimchi spoilage were remarkably high. The effect of BAAC on the cellular membrane function of microorganisms showed the perturbation of cells in the presence of BAAC. Direct isualization of microbial cells by using both transmission md scanning electron microscope showed microbial cell membrane was destroyed by treating with BAAC. It could be confirmed that BAAC completely inhibit the growth of the test strains. The pH of BAAC-added Kimchi was a little higher than that of the control through the fermentation period. Titratable acidify, vitamin C and viable cells in BAAC-added Kimchi were changed more slowly than those in the control. Sensory evaluation did not show any significant difference between $0.01\%$ BAAC-added Kimchi and the control that showed the best palatabilities during fermentation.

Biological Evaluation of the Methanolic Extract of Eriobotrya japonica and Its Irradiation Effect (비파 메탄올 추출물의 생리활성 및 방사선 조사 효과)

  • Kim, Hee-Jung;Jo, Cheor-Un;Kim, Tae-Hoon;Kim, Dong-Sup;Park, Moon-Young;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.684-690
    • /
    • 2006
  • Eriobotrya japonica has been used as a folk medicine for treatment of skin diseases, inflammation, coughing, phlegm, and ulcers in Korea and other Asian countries. In a search for possible bioactive agents from natural sources, we found that the methanolic extracts from various parts of E. japonica showed moderate antioxidative and antimicrobial activities in several in vitro bioassay systems. Additionally, the respective parts of E. japonica were irradiated at 20 kGy to investigate the effects of irradiation. Gamma irradiation of E. japonica extracts removed the deep greenish color without affecting its natural biological activities such as its antioxidative and antimicrobial properties. Based on these findings, the methanolic extracts of this plant source may be not affected by gamma irradiation as its bioactive constituents may be insensitive to this irradiation. Moreover, the methanolic extract of E. japonica may serve as a good natural resource for beneficial functions in food and other related industries.

Antimicrobial and Antifungal Activities of Lisianthus (Eustoma grandiflorum) Essential Oil (리시안셔스 유래 에센셜 오일의 항세균 및 항진균 효과)

  • Ji, Keunho;Kim, Dong Kwang;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.430-434
    • /
    • 2017
  • Essential oils are fragrant oils extracted from the leaves, stems, peels, petals and roots of aromatic plants cultivated by natural means or using organic agricultural techniques. Essential oils have commonly been used as antibacterial and antifungal agents. In the present study, essential oil was extracted from lisianthus (Eustoma grandiflorum [Raf.] Shinn.) and tested for antifungal activities against three eumycetes (Penicillium pinophilum, Chaetomium glogosum and Aspergillus niger). Lisianthus essential oil showed high antifungal activities against three eumycetes, especially against Aspergillus niger, for which the resulting minimum inhibitory concentration (MIC) was 0.005 mg/ml. In addition, the extracted essential oil was shown to have antimicrobial activity against ten intestinal pathogenic bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis, Enterococcus faecalis and Vibrio parahaemolyticus) according to the disc diffusion method and was also shown to exhibit strong antibacterial activity against an additional three pathogenic bacteria (Bacillus subtilis, Listeria monocytogenes and Vibrio parahaemolyticus). These results indicate that lisianthus essential oil could be used as an antibiotic against harmful bacteria that produce intestinal illnesses. From the present study, we suggest that lisianthus extracts can be utilized as potential antifungal and antibacterial agents and for the development of pharmaceutical and cosmetic products.