DOI QR코드

DOI QR Code

Antioxidant and Antimicrobial Activities of Fruiting Bodies of Phellinus gilvus Collected in Korea

국내에서 수집된 마른진흙버섯 자실체의 항산화 및 항균 효과

  • Yoon, Ki-Nam (Department of Clinical Laboratory Science, Ansan University) ;
  • Jang, Hyung Seok (Department of Clinical Laboratory Science, Ansan University)
  • 윤기남 (안산대학교 임상병리과) ;
  • 장형석 (안산대학교 임상병리과)
  • Received : 2016.10.05
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

This study was initiated to evaluate the antioxidant and antimicrobial activities of methanol extract (ME) and hot water extract (HWE) obtained from the fruiting bodies of medicinal mushroom, Phellinus gilvus. The free radical scavenging activity of ME from P. gilvus on 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 93.65% at 2 mg/mL, which was comparable with the positive control, butylated hydroxytoluene (BHT, 96.97%) at the same concentration. The ferrous ion-chelating ability of ME and HWE was significantly higher than that of BHT at all concentration levels. The antimicrobial assay of ME was performed against six bacteria and one species of fungus. ME exhibited antibacterial activity against 5 out of 6 bacteria: Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa; whereas, ME did not show antimicrobial activity against gram-negative bacterium Vibrio vulnificus and fungal species Candida albicans. The minimum inhibitory concentration (MIC) of ME against 5 strains of bacteria, such as S. aureus, S. mutans, B. subtilis, E. coli, and P. aeruginosa, was 100, 100, 50, 100, 200 mg/mL, respectively. The results suggest that good antioxidant and microbial activities of P. gilvus fruiting bodies might be used for natural antioxidant and antimicrobial agents.

본 연구에서는 우리나라에 자생하는 약용 버섯인 마른진흙버섯의 자실체를 80%의 메탄올과 열수를 이용해 추출한 물질의 항산화와 항균 효과에 대한 실험을 수행하였다. 마른진흙버섯 자실체의 메탄올 추출물은 2.0 mg/mL 농도에서 DPPH 라디칼 소거능(93.65%)이 양성대조군인 BHT (96.97%)에 비해 낮았으나 상대적인 효과는 높았다. 철이온 소거능 실험에서 추출물의 모든 농도(0.125~2.0 mg/mL) 범위에서 철이온 소거능 항산화 효과가 BHT에 비해 월등하게 높은 것으로 나타났다. 또한 6종의 세균 S. aureus, S. mutans, B. subtilis, E. coli, P. aeruginosa, V. vulnificus와 1종의 곰팡이 C. albicans를 대상으로 200 mg/mL의 농도에서 메탄올 추출물을 이용해 agar well diffusion법으로 항균효과를 측정한 결과, V. vulnificus와 C. albicans를 제외한 5종의 세균에서 inhibition zone을 보여 메탄올 추출물은 여러 종류의 그람 양성세균과 그람 음성세균에 항균효과를 나타내는 것으로 나타났다. 또한 메탄올 추출물에 inhibition zone을 나타낸 S. aureus, S. mutans, B. subts, E. coli, P. aeruginosa 등 5종의 세균을 대상으로 최소저해농도 (MIC)를 측정한 결과 각각 100, 100, 50, 100, 200 mg/mL의 MIC를 나타내었다. 따라서 마른진흙버섯 자실체의 메탄올 추출물은 항산화 및 항균 효과가 높아서 이들 추출물은 천연 항산화제와 항균제로 이용이 가능할 것으로 사료된다.

Keywords

References

  1. Cheung PCK. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci Human Wellness. 2013;2:162-166. https://doi.org/10.1016/j.fshw.2013.08.001
  2. Anke T. Basidiomycetes: A source for new bioactive secondary metabolites. Prog Ind Microbiol. 1989;27:51-66.
  3. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999;19:65-96.
  4. Lindequist U, Niedermeyer THJ, Julich WD. The pharmacological potential of mushrooms. eCAM. 2006;2:285-299.
  5. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1-40. https://doi.org/10.1016/j.cbi.2005.12.009
  6. Nathan C, Cars O. Antibiotic resistance-problems, progress, and prospects. N Engl J Med. 2014;371:1761-1763. https://doi.org/10.1056/NEJMp1408040
  7. Westh H, Zinn C.S, Rosahi VT. An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb Drug Resist. 2005;10:169-179.
  8. Nwachukwu E, Uzoeto HO. Antimicrobial activity of some local mushrooms on pathogenic isolates. J Med Plants Res. 2010;4(23):2460-2465. https://doi.org/10.5897/JMPR10.154
  9. Broadbent D. Antibiotics produced by fungi. Bot Rev. 1966;32:219-242. https://doi.org/10.1007/BF02858660
  10. Park WH, Lee HD. Illustrated book of Korean medicinal mushrooms. 2nd ed. Seoul, Korea: KyoHak Publishing; 2003. p213-p215.
  11. Bae JS, Jang KH, Yim H, Jin HK. Polysaccharide isolated from Phellinus gilvus inhibit melanoma growth in mouse. Caner Lett. 2005;218:43-52. https://doi.org/10.1016/j.canlet.2004.08.002
  12. Bae JS, Jang KH, Jin HK. Polysaccharide isolated from Phellinus gilvus enhances dermal wound healing in streptozotocin-induced diabetic rats. J Vet Sci. 2005;6:161-164. https://doi.org/10.4142/jvs.2005.6.2.161
  13. Jang BS, Kim JC, Bae JS, Rhee MH, Jang KH. Song JC, et al. Extracts of Phellinus gilvus and Phellinus baumii inhibit pulmonary inflammation induced by lipopolysaccharide in rats. Biotechnol Lett. 2004;26:31-33. https://doi.org/10.1023/B:BILE.0000009456.63616.32
  14. Shim SM, Im KH, Kim JW, Shim MJ, Lee MW, Lee TS. Studies on immuno-modulatory and antitumor effects of crude polysaccharides extracted from Paecilomyces sinclairii. Kor J Mycol. 2003;31:155-160. https://doi.org/10.4489/KJM.2003.31.3.155
  15. Galvez M, Martin-Cordero C, Houghton PJ, Ayuso MJ. Antioxidant activity of Plantago bellardii All. Phytother Res. 2005;19:1074-1076. https://doi.org/10.1002/ptr.1797
  16. Dinis TCP, Madeira VMC, Almeida MLM. Action of phenolic derivates (acetoaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994;315:161-169. https://doi.org/10.1006/abbi.1994.1485
  17. Gulcin I, Buyukokuroglu ME, Oktay M, Kufrevioglu OI. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. J Ethnopharmacol. 2003;86:51-58. https://doi.org/10.1016/S0378-8741(03)00036-9
  18. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144-158.
  19. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  20. Oyetayo VO, Dong CH, Yao YJ. Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. Open Myco J. 2009;3:20-26. https://doi.org/10.2174/1874437000903010020
  21. Kosanic M, Rankovic B, Dasic M. Mushrooms as possible antioxidant and antimicrobial agents. Iran J Pharmaceut Res. 2012;11(4):1095-1102.
  22. Prabu M, Kumuthakalavallia R. Antioxidant activity of oyster mushroom (Pleurotus florida [Momt.] Singer) and milky mushroom (Calocybe indica P and C). Int J Curr Pharmaceut Res. 2016;8(3):1-4. https://doi.org/10.22159/ijcpr.2016v8i4.15266
  23. Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Res Int. 2002;35:519-526. https://doi.org/10.1016/S0963-9969(01)00150-8
  24. Singh N, Rajini PS. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004;85:611-616. https://doi.org/10.1016/j.foodchem.2003.07.003
  25. Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol. 2010;48:1230-233. https://doi.org/10.1016/j.fct.2009.12.033
  26. Lin WY, Yang MJ, Hung LT, Lin LC. Antioxidant properties of methanol extract of a new commercial gelatinous mushrooms (white variety of Auricularia fuscosuccinea) of Taiwan. Afr J Biotechnol. 2013;12:6210-6221. https://doi.org/10.5897/AJB12.1520
  27. Menaga D, Rajakumar S, Ayyasamy PM. Free radical scavenging activity of methanol extract of Pleurotus florida mushroom. Int J Pharm Pharmaceut Sci. 2013;5:601-606.
  28. Lee YL, Yen MT, Mau JL. Antioxidant properties of various extracts from Hypsizigus marmoreus. Food Chem. 2007;104:1-7. https://doi.org/10.1016/j.foodchem.2006.10.063
  29. Badu DR, Pandey M, Rao GN. Antioxidant and electrochemical properties of cultivated Pleurotus spp. and their sporeless/low sporing mutants. J Food Sci Technol. 2014;51(11):3317-3324. https://doi.org/10.1007/s13197-012-0822-9
  30. Yoon KN, Jang HS, Jin GH. Antioxidant, anti-diabetic, anti-cholinesterase, and nitric oxide inhibitory activities of fruiting bodies of Agaricus brasiliensis. Korean J Clin Lab Sci. 2015;47:194-202. https://doi.org/10.15324/kjcls.2015.47.4.194
  31. Chukwuebuka E, Chinenye IJ. Biological functions and anti-nutritional effects of phytochemicals in living system. J Pharm Biol Sci. 2015;10:10-19.
  32. Amjad L, Shafighi M. Evaluation of antioxidant activity, phenolic and flavonoid content in Punica granatum var. isfahan Malas flowers. Int J Agri Crop Sci. 2013;5:1133-1139.
  33. Mujic I, Zekovic Z, Lepojevic Z, Vidovic S, Zivkovic J. Antioxidant properties of selected edible mushroom species. J Cent Eur Agric. 2010;11(4):387-391.
  34. Yildiz O, Can Z, Laghari AQ, Sahin H, Malkoc M. Wild edible mushrooms as a natural source of phenolics and antioxidants. J Food Biochem. 2014;39:148-154.
  35. Rahman MM, Rahaman A, Nahar T, Uddin B. Basunia MA, Hossain S. Antioxidant and antimicrobial activity of Pleurotus florida cultivated in Bangladesh. J Med Plants Stu. 2013;1(3):166-175.
  36. Sittiwet C, Puangpronpitag D. Anti-Staphylococcus aureus activity of Phellinus igniarius aqueous extract. Int J Pharmacol. 2008;4(6):503-505. https://doi.org/10.3923/ijp.2008.503.505
  37. Nedelkoska DN, Pancevska, NA, Amedi H, Veleska, D, Ivanova E, Karadelev M, et al. Screening of antibacterial and antifungal activities of selected Macedonian wild mushrooms. J Nat Sci Matica Srpska Novi Sad. 2013;124:333-340.
  38. Komemushi S, Yamamoto Y, Fujita T. Purification and identification of antimicrobial substances produced by Lentinus edodes. J Antibact Antifung Agents. 1996;24:21-25.
  39. Hong SB, Lee CH. Antimicrobial activity of Houttuynia cordata ethanol extract against major clinical resistant microorganisms. Kor J Clin Lab Sci. 2015;47:194-202. https://doi.org/10.15324/kjcls.2015.47.4.194
  40. Hugo WB, Russell AD. Pharmaceutical microbiology. 3rd ed. Oxford: Blackwell Scientific; 1983.

Cited by

  1. 고지방과 콜레스테롤 식이로 유도된 고지혈증 흰쥐에서 노루궁뎅이버섯의 항고지혈증 효과 vol.49, pp.3, 2017, https://doi.org/10.15324/kjcls.2017.49.3.263
  2. 마른진흙버섯 자실체의 Xanthine Oxidase, Cholinesterase 및 염증 저해 효과 vol.50, pp.3, 2016, https://doi.org/10.15324/kjcls.2018.50.3.225