• Title/Summary/Keyword: natural accession

Search Result 34, Processing Time 0.026 seconds

Screening the level of cyanogenic glucosides (dhurrin) in sorghum accessions using HPLC analysis

  • Choi, Sang Chul;Chung, Yong Suk;Lee, Yun Gyeong;Park, Yun Ji;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.104-104
    • /
    • 2017
  • Sorghum (Sorghum bicolor (L.) Moench.) is one of the most important crops for human and animal nutrition. Nonetheless, sorghum has a cyanogenic glucoside compound which can be degraded into hydrogen cyanide, toxic to humans and animals even with tiny amount. In consequence, breeding materials with a low cyanide level has been a top priority in sorghum breeding programs. To fulfill our long-term goal, we are screening sorghum accessions with low cyanide level, which would be an important breeding material for food safety. We collected seeds of various sorghum accessions and analyzed relevant metabolites to find useful breeding materials of sorghum accessions containing low cyanide. Fourteen wild relatives were obtained from the University of Georgia in US, a reference accession BTx623, and three local varieties from National Agrobiodiversity Center of Rural Development Administration in Korea, and one wild species from the Wild Plant Resources Seed Bank of Korea University in Korea. Sorghum plants were grown in plastic greenhouse under natural conditions. After growing, leaf samples were harvested at different developmental stages: seedling phase, vegetative phase (right before flowering), and reproductive phase (ripening). Using collected samples, quantification analysis were performed by an HPLC system for three metabolites (dhurrin, 4-hydroxybenzaldehyde, and 4-hydroxyphenylacetic acid) in sorghum plants. Prior to metabolome analysis, specific experimental condition for HPLC system was set to be able to separate three metabolites simultaneously. Under this condition, these metabolites were quantified in each accession by HPLC system. We observed that the metabolite contents were changed differently by developmental stages and accessions. We clustered these results into five groups as patterns of their contents by developmental stages. Most of accessions showed that 4-hydroxybenzaldehyde content was very high at seedling stage and decreased rapidly at vegetative phase. Interestingly, the patterns of dhurrin content were very different among clusters. However, 4-hydroxyphenylacetic acid content was maintained at low levels by developmental stages in most accessions. The results would demonstrate how dhurrin and alternative degradation pathways are differentiated in each accession.

  • PDF

Overview of Arabidopsis Resource Project in Japan

  • Kobayashi, Masatomo
    • Interdisciplinary Bio Central
    • /
    • v.3 no.1
    • /
    • pp.2.1-2.4
    • /
    • 2011
  • Arabidopsis is well-known to the world's plant research community as a model plant. Many significant resources and innovative research tools, as well as large bodies of genomic information, have been created and shared by the research community, partly explaining why so many researchers use this small plant for their research. The genome sequence of Arabidopsis was fully characterized by the end of the $20^{th}$ century. Soon afterwards, the Arabidopsis research community began a 10-year international project on the functional genomics of the species. In 2001, at the beginning of the project, the RIKEN BioResource Center (BRC) started its Arabidopsis resource project. The following year, the National BioResource Project was launched, funded by the Japanese government, and the RIKEN BRC was chosen as a core facility for Arabidopsis resource. Seeds of RIKEN Arabidopsis transposon-tagged mutant lines, activation-tagged lines, full-length cDNA over-expresser lines, and natural accessions, as well as RIKEN Arabidopsis full-length cDNA clones and T87 cells, are preserved at RIKEN BRC and distributed around the world. The major resources provided to the research community have been full-length cDNA clones and insertion mutants that are suitable for use in reverse-genetics studies. This paper provides an overview of the Arabidopsis resources made available by RIKEN BRC and examples of research that has been done by users and developers of these resources.

Investigating Biochemical Properties of Bacillus aryabhattai DA2 from Diesel-Contaminated Soil

  • Kim, Sang-Jun;Adhikari, Arjun;Lee, Ko-Eun;Joo, Gil-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.199-205
    • /
    • 2018
  • Petroleum energy is the major source of the world energy market, and its massive usage, and the corresponding extreme environmental pollution, imposes a serious threat on the ecological cycles. By screening oil-contaminated soil, we isolated, identified, and characterized a novel strain that represents a considerable diesel-degrading potentiality; the Bacillus aryabhattai DA2 strain is registered in the NCBI with the accession number MG571630, and it possesses an efficient tributyrin-degrading capacity. The optimal condition for diesel degradation by DA2 strain was observed at pH between 7-8 and at the temperature of $30^{\circ}C$. The strain is resistant to salt as well as the antibiotics like ampicillin and streptomycin. These results indicate B. aryabhattai is one of the potential candidates for the remediation of the diesel-contaminated sites.

Geographic Variation of Flowering Response to Daylength in Perilla frutescens var. frutescens in East Asia

  • Lee, Ju-Kyong;Ohmi Ohnishi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.395-400
    • /
    • 2001
  • We investigated the variations of the flowering response to daylength in Perilla crop (var. frutescens). Seventeen accessions of Perilla crop and one accession of weedy type of var. crispa from China, Korea and Japan were cultivated under three daylength conditions, i.e., short-days, natural daylength and long-days. Most accessions of Perilla crop from China, Korea and Japan were divided into three types, early maturing type, intermediate maturing type and late maturing type by their natural flowering habit. In most of the accessions used, the flowering habit was significantly accelerated by short-day conditions and was delayed by long-day conditions. All the accessions of Perilla crops flowered within 57 days under the 10 hrs light treatment, whereas they did not flower at all even at 170 days after sowing under the 16 hrs light treatment. Thus, this finding suggested that there is a relationship between the types of flowering response to daylength and the geographical distribution which determines the planting season in traditional cultivation practices of Perilla crops. Positive correlation was observed between days to flowering and plant height or internode number in both the short-day and natural daylength conditions. Whereas, correlation was negative between days to flowering and inflorescence length or floret number in natural daylength condition, but it was positive in the short-day condition. Therefore, the daylength condition is considered as the most important environmental factor for flowering habit and morphological characters of Perilla crops. Flowering habit is considered as an important key character for the study of geographical differentiation of Perilla crop in East Asia.

  • PDF

Phylogenetic Study of Ganoderma applanatum and Schizopora paradoxa Basd on 5S rRNA Sequences (5S rRNA 염기서열에 으한 잔나비걸상과 좀구멍버섯의 계통학적 연구)

  • Kim, Hak-Hyun;Jung, Hack-Sung
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.177-181
    • /
    • 1994
  • The sequences of the cytoplasmic 5S rRNAs(EMBL accession number X73589 and X73890) from two polupores, Ganoderma applanatum and Schizopora paradoxa, were determined by the direct chemical method for sequencing RNA and compared to the sequences of 9 reported mushrooms. 5S rRNAs of Ganoderma applanatum and Schizopora paradoxa consisted of 118 bases and fit the secondary structure model of the 5S rRNAs of basidiomycetes proposed by Huysmans et al. Based on Kimura’s K_nuc values, the closest fungus to Ganoderma applanatum was Ceratobasidium cornigerum and the one to Schizopora paradoxa was Bjerkandera adusta. When the secondary structures of 5S rRNAs of 11 mushrooms were compared the base substitution occurred at helix regions more than at loop regions. When a phylogenetic tree was constructed using the Neighbor program of the PHYLIP package, it partially discriminated and separated the mushrooms of the Hymenomycetes by the order.

  • PDF

A Phi Class Glutathione S-transferase from Oryza sativa (OsGSTF5): Molecular Cloning, Expression and Biochemical Characteristics

  • Cho, Hyun-Young;Lee, Hae-Joo;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.511-516
    • /
    • 2007
  • A glutathione S-transferase (GST) related to the phi (F) class of enzymes only found in plants has been cloned from the Oryza sativa. The GST cDNA was cloned by PCR using oligonucleotide primers based on the OsGSTF5 (GenBank Accession No. $\underline{AF309382}$) sequences. The cDNA was composed of a 669-bp open reading frame encoding for 223 amino acids. The deduced peptide of this gene shared on overall identity of 75% with other known phi class GST sequences. On the other hands, the OsGSTF5 sequence showed only 34% identity with the sequence of the OsGSTF3 cloned by our previous study (Cho et al., 2005). This gene was expressed in Escherichia coli with the pET vector system and the gene product was purified to homogeneity by GSH-Sepharose affinity column chromatography. The expressed OsGSTF5 formed a homo-dimer composed of 28 kDa subunit and its pI value was approximately 7.8. The expressed OsGSTF5 displayed glutathione conjugation activity toward 1-chloro-2,4-dinitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy)propane and glutathione peroxidase activity toward cumene hydroperoxide. The OsGSTF5 also had high activities towards the herbicides alachlor, atrazine and metolachlor. The OsGSTF5 was highly sensitive to inhibition by S-hexylGSH, benastatin A and hematin. We propose from these results that the expressed OsGSTF5 is a phi class GST and appears to play a role in the conjugation of herbicide and GPOX activity.

The Complete Nucleotide Sequence of a Korean Isolate Bean yellow mosaic virus from Freesia sp. and Comparison to Other Potyviruses

  • Choi, Sun-Hee;Yoon, Ju-Yeon;Ryu, Ki-Hyun;Choi, Seung-Kook
    • Research in Plant Disease
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • Bean yellow mosaic virus (BYMV; genus Potyvirus, family Potyviridae) causes severe losses to various legume species and a number of non-legume species, particularly freesia plants. In a survey of virus diseases in Gyeonggi province, Korea, BYMV isolates were identified from many cultivated freesia species. Here, we determined the complete nucleotide sequences of a BYMV freesia isolate (BYMV-Fr; accession number FJ492961). BYMV-Fr genome consists of 9,545 nucleotides (nt) excluding the poly (A) tail and encodes 3,057 amino acid (aa), with an AUG start and UAG stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of BYMV-Fr was divided to ten proteins and the cleavage sites of each protein were determined. The coat protein (CP) and polyprotein of BYMV-Fr were compared at the aa level with those of the previously reported 4 BYMV isolates. BYMV-Fr shared 90.1 to 97.1 and 91.0 to 92.5% at the CP and polyprotein homology. Interestingly, BYMV-Fr showed identities of a lower level at the nt level of 5' noncoding region (61.4 to 67.6%) and at the aa level of P1 (71.4 to 72.8%), comparing with four BYMV isolates. Based on the aa sequence diversity of CP and polyprotein, phylogenetic analysis with the four BYMV isolates showed two distinct groups and BYMV-Fr and most BYMV isolates were most closely related to the clover yellow vein virus among 52 potyviruses. To our knowledge, this is the first report of the complete genome sequence of BYMV freesia strain.

Complete Sequence of a Gene Encoding KAR3-Related Kinesin-like Protein in Candida albicans

  • Kim Min-Kyoung;Lee Young Mi;Kim Wankee;Choi Wonja
    • Journal of Microbiology
    • /
    • v.43 no.5
    • /
    • pp.406-410
    • /
    • 2005
  • In contrast to Saccharomyces cerevisiae, little is known about the kinesin-like protein (KLP) in Candida albicans. The motor domain of kinesin, or KLP, contains a subregion, which is well conserved from yeast to humans. A similarity search, with the murine ubiquitous kinesin heavy chain region as a query, revealed 6 contigs that contain putative KLPs in the genome of C. albicans. Of these, the length of an open reading (ORF) of 375 amino acids, temporarily designated CaKAR3, was noticeably short compared with the closely related S. cerevisiae KAR3 (ScKAR3) of 729 amino acids. This finding prompted us to isolate a ${\lambda}$ genomic clone containing the complete CaKAR3 ORF, and here the complete sequence of CaKAR3 is reported. CaKAR3 is a C-terminus motor protein, of 687 amino acids, encoded by a non-disrupting gene. When compared with ScKAR3, the amino terminal region of 112 amino acids was unique, with the middle part of the 306 amino acids exhibiting $25\%$ identity and $44\%$ similarity, while the remaining C-terminal motor domain exhibited $64\%$ identity and $78\%$ similarity, and have been submitted to GeneBank under the accession number AY182242.

Characterization of Diesel Degrading Enterobacter cancerogenus DA1 from Contaminated Soil

  • Kim, Sang-Jun;Joo, Gil-Jae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.190-198
    • /
    • 2018
  • The petroleum industry is an important part of the world economy. However, the massive exposure of petroleum in nature is a major cause of environmental pollution. Therefore, the microbial mediated biodegradation of petroleum residues is an emerging scientific approach used to resolve these problem. Through the screening of diesel contaminated soil we isolated a rapid phenanthrene and a diesel degrading bacterium identified as Enterobacter cancerogenus DA1 strain through 16S rRNA gene sequence analysis. The strain was registered in NCBI with an accession number MG270576. The optimal growth condition of the DA1 strain was determined at pH 8 and $35^{\circ}C$, and the highest degradation rate of the diesel was achieved at this condition. At the optimal condition, growth of the strain on the medium containing 0.05% phenanthrene and 0.1% of diesel-fuel was highest at 45 h and 60 h respectively after the incubation period. Biofilm formation was found significantly higher at $35^{\circ}C$ as compared to $30^{\circ}C$ and $40^{\circ}C$. Likewise, the lipase activity was found significantly higher at 48 h after the incubation compared to 24 h and 72 h. These results suggest that the Enterobacter cancerogenus DA1 could be an efficient candidate, for application through ecofriendly scientific approach, for the biodegradation of petroleum products like diesel.

Seed Purity Test and Evaluation in Isatis tinctoria var. yezoensis (Ohwi) Ohwi Using AFLP Markers (대청에서 AFLP를 이용한 종자순도검사와 평가)

  • Choi, Joo-Soo;Huh, Man-Kyu;Sung, Jung-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.198-203
    • /
    • 2009
  • Isatis tinctoria var. yezoensis (Ohwi) Ohwi (Cruciferae) is one of major natural dyeing crops in the world and also have used as a medicinal plant in Korea. We evaluated seed purity in $F_1$-hybrid accessions using amplified fragment length polymorphism (AFLP) markers. One hundred sixty seeds from the male and female harvests were subsequently screened for seed purity with ten primers. The 13 accession-specific bands and many variable AFLP bands scored for accessions. Especially, E-AAC/M-CAA and E-AAG/M-CAT were presented clear hybrid bands for $F_1$ hybrids. $F_1$ hybrids maintained higher average level of genetic diversity compared with their correspondent parents. Self-inbred seeds from the female and male harvests were revealed 8.0% and 5.0%, respectively. The AFLP may lead to a better insight in to the hybrid seed purity test in I. tinctoria var. yezoensis.