• 제목/요약/키워드: natural / forced convection

검색결과 89건 처리시간 0.025초

자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구 (A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection)

  • 이민;김태완
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4072-4080
    • /
    • 2014
  • 펠티에 소자는 전자부품이나 장비에서 발생하는 열을 냉각하기 위한 방법으로 많이 사용되고, 히트싱크는 이러한 열을 외부로 방출하기 위한 방법으로 많이 사용되고 있다. 본 연구에서는 내부터널의 형상을 가지는 히트싱크에 대한 냉각 및 히팅성능을 자연대류와 강제대류 상태에서 열전달 특성에 대하여 고찰하였다. 또한, 시간에 따른 히트싱크의 열전달 특성 및 온도분포의 변화에 따른 실험을 수행하였고, 자연대류와 강제대류에 따른 히트싱크의 열전달 특성, 온도분포의 변화를 실험을 통해 비교 연구 하였다. 냉각 실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 감소하는 것을 알 수가 있었고, 강제대류와 자연대류에서 A, B형상 모두 $-15^{\circ}C$까지 떨어지는 것을 알 수 있었다. 전압이 증가 할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 감소하였다. 히팅실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 증가하는 것을 알 수가 있었고, 강제대류와 자연대류에서 전압이 13V일 때, A형상 냉각 핀 히트싱크는 전압이 $150^{\circ}C$, 강제대류에서 B형상 냉각 핀 히트싱크는 $145^{\circ}C$까지 증가하였다. 전압이 증가할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 증가하였다.

뉴 디자인된 히트싱크의 열 유동 현상 컴퓨터 시뮬레이션 (Computational Simulation of Heat flow phenomena in Newly Designed Heat Sinks)

  • 임송철;최종운;강계명
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.775-779
    • /
    • 2004
  • For improvement of heat dissipation performance, heat analysis is conducted on the newly designed heat sinks under two convection conditions by using computational fluid dynamics(CFD). Three types of heat sink, plate, wave and top vented wave, are used, and convection conditions are the variations of gravity direction at natural convection and of fan location at forced convection. The results of analysis showed that the heat resistances of top vented wave heat sink were $0.17^{\circ}C$/W(forced convection) and $0.48^{\circ}C$/W(natural convection). In the case of natural convection, gravity direction affected heat flow change, and protection against heat performance was superior in case of z-axis gravity direction. Under the forced convection, all the heat sinks revealed superior thermal characteristics in the fan position of z-axis rather than y-axis. In this study, it was observed that the top vented wave type heat sink showed the best ability of heat radiation comparing with the others.

다양한 형상의 Heat Sink 열저항 특성에 관한 실험적 연구 (An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks)

  • 김종하;윤재호;이창식
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.676-682
    • /
    • 2002
  • This paper has been made to investigate the thermal performance characteristics for the several types of heat sinks such as extruded heat sink, aluminum foam heat sink, layered heat sink. The various types heat sinks are prepared and tested for natural convection as well as forced convection. The experimental results for natural convection are compared to those for three types of heat sink so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for layered heat sink, extruded heat sink and aluminum foam heat sink are almost comparable to those under natural convection and forced convection. The forced convection of layered heat sink become 1.2 times as high as those of extruded heat sink, and the forced convection of extruded heat sink become 1.2 times as high as those of aluminum foam heat sink. This study shows that bar height, bar distance and number of bar for layered heat sink are important parameters, which have a serious influence on thermal performance for layered heat sinks.

초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과 (Magnetic field effects of silicon melt motion in Czochralski crystal puller)

  • 이재희
    • 한국결정성장학회지
    • /
    • 제15권4호
    • /
    • pp.129-134
    • /
    • 2005
  • 초크랄스키 단결정장치내 실리콘 유동의 자기장효과에 대한 수치해석을 하였다. 8" 단결정 성장과정에서 난류 모형을 사용하여 수송현상을 계산하였다. 도가니 회전수가 작으면 자연대류가 지배적이었다. 도가니 회전수가 증가할수록 강제대류가 증가되며 온도 분포는 더 넓어진다. cusp 자기장을 인가하면 도가니근처의 유동이 크게 감소하며 온도분포는 전도의 경우와 비슷해진다.

CFD 해석을 이용한 한국도로공사 표준 25 [W] LED 모듈의 방열 특성 분석 (Analysis of Heat Dissipation Characteristics for Standard 25 [W] LED Module of Korea Expressway Corporation: Using CFD Analysis)

  • 이세일;허인성;이아람;정민주;유영문
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.541-546
    • /
    • 2014
  • Korea Expressway Corporation established standard of LED lighting fixture in Dec. 2013. To raise compatibility, the standard requires a fixed form and it is applied to street lights and tunnel lights, etc. Because streetlight has different circumstance condition from tunnel light that is down light and exposed to constant wind velocity over height of 8 meters, in case of LED module which has the same shape, characteristic of radiant heat can be different. In this paper, we designed 25 [W] LED Module that is designated by standard of Korea Expressway Corporation and analyzed characteristics of radiant heat about natural convection and forced convection. It is dropped 10.12[$^{\circ}C$] that max temperature is decreased by increasing 20 mm of bended height of heatsink at the condition of natural convection. Radiant heat characteristic of bended height 35 mm became 78.08[$^{\circ}C$] at the condition of natural convection, 55.30[$^{\circ}C$] at the condition of forced convection so that 22.78[$^{\circ}C$] is decreased that is 29.1[%] decrease. Bended height 55mm became 67.96[$^{\circ}C$] at the condition of natural convection, 48.04[$^{\circ}C$] at the condition of forced convection so that 19.92[$^{\circ}C$] is decreased that is 29.3% decrease.

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

수직 채널내의 가열 돌출 배열에서의 대류 열전달 (A Study of the Convective Heat Transfer in a Vertical Channel of an Array of Heated Protrusions)

  • B. J, Baek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.844-853
    • /
    • 1998
  • Natural and forced convection experiments were carried out in order to investigate the effects of channel spacing gap between protrusions and number of rows of protrusion, In natural convection the optimum channel spacing was found to be approximately 20mm regardless of the protrusion gaps. For optimum channel spacing the heat transfer coefficients were converged to an asymptotic value after the fourth row. The heat transfer coefficient for each row approaches to constant values for protrusion gaps larger than 10 mm. An experimental correlation has been suggested by using a modified Rayleigh number based on the dimensionless characteristic length(G/L). In forced convec-tion the heat transfer coefficients were not merged to an asymptote until the fifty row and increases as the channel spacing at the constant Reynolds number decreases.

  • PDF

전산모사에 의한 웨이브 히트싱크의 열유동 특성 해석 (Heat Flow Analysis in the Newly Developed Wave Heat Sink by Computational Simulation)

  • 이인규;이상웅;강계명;장시영
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.870-875
    • /
    • 2004
  • Heat flow characteristics in the newly developed Wave Heat Sink were analyzed under natural and forced convections by Icepak program using the finite volume method. Temperature distribution and thermal resistance of Wave Heat Sink with/without air vent hole on the top of fin were compared with those of a commercial Al extruded heat sink(Intel Heat Sink). Under the natural convection, the maximum temperature was $45.1^{\circ}C$ in the air vent hole typed Wave Heat Sink, which was superior to that of Intel Heat Sink. The thermal resistance was $2.51^{\circ}C/W$ in the air vent hole typed Wave Heat Sink, and it changed to $2.65^{\circ}C/W\;and\;2.16^{\circ}C/W$ with changes of gravity direction and fin height, respectively. Under the forced convection, the maximum temperature became lower than that under the natural convection. In addition, the thermal resistance lowered in the air vent hole typed Wave Heat Sink with higher fin height and it decreased with increasing the air flux.

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter;C.G. du Toit
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.959-965
    • /
    • 2024
  • The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.

하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류 (Mixed Convection in a Horizontal Annulus with a Rotating Cylinder)

  • 유주식;하대홍
    • 한국전산유체공학회지
    • /
    • 제6권3호
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF