• Title/Summary/Keyword: native and model membranes

Search Result 6, Processing Time 0.019 seconds

Effects of Barbiturates on the Rotational Relaxation Time of 1, 6-Diphenyl-1, 3, 5-hexatriene in Native and Model Membranes

  • Chung, Yong-Za;Shin, Yong-Hee;Choi, Chang-Hwa;Park, Hyung-Sook;Koh, Yeong-Sim;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.15 no.4
    • /
    • pp.298-303
    • /
    • 1992
  • Synaptosomal plasma membrane vesicles (SPMV) were isolated from fresh bovine cerebral cortex. The effects of barbiturates on the rotational relaxation time of 1.6-diphenyl-1, 3, 5-hexatriene (DPH) in intact SPMV and model membranes of total lipids (SPMVTL) and phosphlipids (SPMVPL) extracted from SPMV were examined. Barbiturates decreased the rotational relaxation time of DPH in intact SPMV in a dose-dependent manner. In contrast, they did not affect the rotational relaxation time of DPH in SPMVTL and even dose-dependently increased the rotational relaxation time of DPH in SPMVPL.

  • PDF

Local tissue effects of various barrier membranes in a rat subcutaneous model

  • Naenni, Nadja;Lim, Hyun-Chang;Strauss, Franz-Josef;Jung, Ronald E.;Hammerle, Christoph H.F.;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.327-339
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. Methods: Seven different membranes-3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)-were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non-cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.

Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

  • Tian, Yongmei;Cai, Mingjun;Xu, Haijiao;Ding, Bohua;Hao, Xian;Jiang, Junguang;Sun, Yingchun;Wang, Hongda
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.592-597
    • /
    • 2014
  • The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

Effect of Lidocaine-HCl on Microviscosity of Phosphatidylcholine Model Membrane

  • Chung, In-Kyo;Kim, Inn-Se;Choi, Chang-Hwa;Cho, Goon-Jae;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2000
  • In order to provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics and to develop a fluorescence spectroscopic method which can detect the microviscosity of native and model membranes using intramolecular excimerization of 1,3-di(l-pyrenyl)propane (Py-3-Py), we examined the effect of lidocaine HCl on the microviscosity of model membranes of phosphatidylcholine fraction extracted from synaptosomal plasma membrane vesicles (SPMVPC). The excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in liquid paraffin was a simple linear function of $T/{\eta}.$ Based on this calibration curve, the microviscosity values of the direct probe environment in SPMVPC model membranes ranged from $234.97{\pm}48.85$ cP at $4^{\circ}C$ to %19.21{\pm}1.11$ cP at $45^{\circ}C.$ At $37^{\circ}C,$ a value of $27.25{\pm}0.44$ cP was obtained. The lidocaine HCl decreased the microviscosity of SPMVPC model membranes in a concentration-dependent manner, with a significant decrease in microviscosity value by injecting the local anesthetic even at the concentration of 0.5 mM. These results indicate that the direct environment of Py-3-Py in the SPMVPC model membranes is significantly fluidized by the lidocaine HCl. Also, the present study explicitly shows that an interaction between local anesthetics and membrane lipids is of importance in the molecular mechanism of pharmacological action of lidocaine HCl.

  • PDF

The Effect of 1-Propanol on the Rotational Mobility of n-(9-Anthroyloxy) stearic acid in Outer Monolayers of Neuronal and Model Membranes

  • Ahn, Tae-Young;Jin, Seong-Deok;Yang, Hak-Jin;Yoon, Chang-Dae;Kim, Mi-Kyung;An, Taek-Kyung;Bae, Young-Jun;Seo, Sang-Jin;Kim, Gwon-Su;Bae, Moon-Kyoung;Bae, Soo-Kyoung;Jang, Hye-Ock
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.175-181
    • /
    • 2017
  • The aim of this study was to provide a basis for the molecular mechanism underlying the pharmacological action of ethanol. We studied the effects of 1-propanol on the location of n-(9-anthroyloxy)palmitic acid or stearic acid (n-AS) within the phospholipids of synaptosomal plasma membrane vesicles (SPMV). The SPMV were isolated from the bovine cerebral cortex and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL). 1-Propanol increased the rotational mobility of inner hydrocarbons, while decreasing the mobility of membrane interface, in native and model membranes. The degree of rotational mobility varied with the number of carbon atoms at positions 16, 12, 9, 6 and 2 in the aliphatic chain of phospholipids in the neuronal and model membranes. The sensitivity of increasing or decreasing rotational mobility of hydrocarbon interior or surface by 1-propanol varied with the neuronal and model membranes in the following order: SPMV, SPMVPL and SPMVTL.

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.