• Title/Summary/Keyword: nash equilibrium

Search Result 198, Processing Time 0.022 seconds

The Fleet Operating Strategies for Ocean Container Carriers in a East Asian Shipping Market: A Game Theoretic Approach (동아시아 해운시장의 컨테이너선사 선대 운항전략: 게임이론 접근법)

  • Park, Byungin
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.4
    • /
    • pp.73-95
    • /
    • 2013
  • This paper analyzes a competitive shipping market in East Asia in order to explore how container carriers make decisions on ship size, number of ships, service frequency, and service route. A sequential-move game based on non-cooperative game theory is applied to establish the models for the decision-makings involving the transportation volumes, freight rates, costs, and market shares of the service routes from Shanghai or Hong Kong to the ports in Busan, Gwangyang, and Incheon. According to the sub-game perfect Nash equilibrium solutions proposed by these models, carriers' decisions in such a competitive environment vary depending on sailing distance, transport demand, and freight rates. Therefore, carriers are recommended to reflect the optimal equilibrium solutions and a variety of decision factors when formulating strategies for transportation networks and operating fleets. Furthermore, ports should establish management strategies for these factors to provide optimal equilibrium solutions for carriers' transportation networks.

PARTIAL INTERNATIONAL COORDINATION OF MONETARY POLICIES (부분 조정하에서의 국가간 통화정책 조정)

  • Kim, Hoon-Yong
    • The Korean Journal of Financial Management
    • /
    • v.12 no.1
    • /
    • pp.145-165
    • /
    • 1995
  • This paper studies a partial coordination situation where a set of countries coordinate their monetary policies among themselves;while the rest of the world choose their policies independently. Using a three-country orewlapping generations model, it is shown that nash partial-coordination equilibrium does not exist. This paper also studies the partial coordination under unanticipated productivity shocks.

  • PDF

Analysis of Revenue-Sharing Contracts for Service Facilities

  • Yeh, Ruey Huei;Lin, Yi-Fang
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.221-227
    • /
    • 2009
  • There are customer services jointly provided by two facilities so that each customer will complete the course made up of both facilities' sub-services. The two facilities are assumed invested respectively by an infrastructure owner and one subordinate facility owner, whose partnership is built on their capital investments. This paper presents a mathematical model of Stackelberg competition between the two facility owners to derive their optimal Nash equilibrium. In this study, each facility owner's profit is consisted of fixed revenue fractions of sold services, operating costs (including depreciation cost) and maintenance costs of her facility. The maintenance costs of one facility are incurred both by failures and deterioration due to usage. Moreover, for both facilities, failures are rectified immediately by minimal repairs and preventive maintenance is carried out at a fixed time epoch. Additional assumptions are also employed to develop the model such as customer arrivals are manipulated to follow a Poisson process, and each facility's lifetime is independently Weibull-distributed. The Stackelberg game proceeds as follows. At the first stage of decision making process, the infrastructure owner (acting as a leader) decides the allocation of revenue shares based on her self-interest. After observing the allocation of revenue shares, the subordinate facility owner determines her own optimal price of services. This paper investigates actions and reactions of the two partners in the system. Then analytical conditions are proposed to achieve a unique optimal Nash equilibrium. Finally, some suggestions for further research are discussed.

Analysis of Network Neutrality in Two-sided Markets Using Game Theory (게임이론에 의한 양면시장에서의 망중립성 분석)

  • Oh, Hyung Sool;Lee, Jae Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.162-169
    • /
    • 2018
  • Net neutrality, which has not been a problem, has recently become a problem for ISPs (Internet Service Providers), and their complaints have been paid by domestic platform companies, but overseas global IT companies such as Google and YouTube, generate huge revenues from domestic markets. In this situation, domestic IT companies claim that it is natural to impose more expensive charges or restrict speed on users who generate huge traffic. On the other side, however, the telecommunication network has become an essential public good that is essential to our everyday life, and because it has been given a monopoly position by a private company to efficiently respond to the explosive demand for telecommunication services, It is necessary to provide equal and universal service and fulfill public duty. In this paper, we deal with the network neutrality problem, focusing on the price elasticity between the CP (Contents Provider) and the ISP, rather than the user who is one side of the two-sided market for the already saturated satellites communication market. We present a game model that determines the optimal price for each platform by Nash equilibrium and analyze how the net neutrality affects CP according to the change of exogenous variables through the proposed game model.

Analysis on the Strategic Bidding of the Generation Capacity in an Electricity Market by Using Game Theory (전력시장에서 발전가능용량의 전략적 입찰에 대한 게임이론적 해석)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.302-307
    • /
    • 2004
  • As deregulation of power industry is becoming a reality, there has been an intense interest in the strategic bidding for suppliers to maximize their profits. The profit gained by a supplier is related not only to its energy-price bid curve but also to its submitted operational parameters such as generation capacity, etc. So suppliers are willing to use those strategic parameters that can be manipulated by themselves and are effective to their profit. This paper deals with the competition model with compound strategies: generation capacity and bidding curve. The parameter space is modeled by dividing into the two strategies, so the problem is made up of the four types of sub-game in a two player game. This paper analyzes the global Nash Equilibrium (NE) over the whole divisions by computing the sub-game NEs in some divisions and by deriving the best response curves which have discontinuities in other divisions. The global NE is shown to correspond to the Cournot NE where the quantity variable is realized by a constraints of a generation capacity.

Adaptive Cooperative Spectrum Sharing Based on Fairness and Total Profit in Cognitive Radio Networks

  • Chen, Jian;Zhang, Xiao;Kuo, Yonghong
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.512-519
    • /
    • 2010
  • A cooperative model is presented to enable sharing of the spectrum with secondary users. Compared with the optimal model and competitive model, the cooperative model could reach the maximum total profit for secondary users with better fairness. The cooperative model is built based on the Nash equilibrium. Then a conceding factor is introduced so that the total spectrum required from secondary users will decrease. It also results in a decrease in cost which the primary user charges to the secondary users. The optimum solution, which is the maximum total profit for the secondary users, is called the collusion state. It is possible that secondary users may leave the collusion state to pursue the maximum of individual profit. The stability of the algorithm is discussed by introducing a vindictive factor to inhabit the motive of deviation. In practice, the number of secondary users may change. Adaptive methods have been used to deal with the changing number of secondary users. Both the total profit and fairness are considered in the spectrum allocating. The shared spectrum is 11.3893 with a total profit of 65.2378 in the competitive model. In the cooperative model, the shared spectrum is 8.5856 with the total profit of 73.4963. The numerical results reveal the effectiveness of the cooperative model.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge Computing Environment

  • He, Yanfei;Tang, Zhenhua
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.615-629
    • /
    • 2021
  • With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.

Backhaul transmission scheme for UAV based on improved Nash equilibrium strategy

  • Liu, Lishan;Wu, Duanpo;Jin, Xinyu;Cen, Shuwei;Dong, Fang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2666-2687
    • /
    • 2022
  • As a new alternative communication scheme in 5G, unmanned aerial vehicle (UAV) is used as a relay in the remote base station (BS) for assistant communication. In order to ameliorate the quality of the backhaul link, a UAV backhaul transmission scheme based on improved Nash equilibrium (NE) strategy is proposed. First, the capacity of air-to-ground (A2G) channel by the link preprocess is maximized. Then, the maximum utility function of each UAV is used as the basis of obtaining NE point according to the backhaul channel and the backhaul congestion. Finally, the improved NE strategy is applied in multiple iterations until maximum utility functions of all the UAVs are reached, and the UAVs which are rejected by air-to-air (A2A) link during the process would participate in the source recovery process to construct a multi-hop backhaul network. Simulation results show that average effective backhaul rate, minimum effective backhaul rate increases by 10%, 28.5% respectively in ideal A2G channel, and 11.8%, 42.3% respectively in fading channel, comparing to pure NE strategy. And the average number of iterations is decreased by 5%.

Knowledge and Strategic Ability based on Strategic Constraints (전략적 제한에 기초한 지식 및 전략 시스템)

  • Koo, Ja-Rok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.33-40
    • /
    • 2009
  • We study Interpreted Systems, ATL, and ATEL to capture the notion of time, knowledge, and strategy which are important in the analysis of multi-agent systems and propose strategic constraints based on subgame perfect Nash equilibrium of game theory as one of the solutions for the issues of ATEL which an agent can access the current state of the whole system when making up his strategy even when he should be uncertain about the state, and no explicit representation of actions in ATEL models makes some natural situations harder to model. Also, we present strategic constraints-based Interpreted Systems for model checking of multi-agent systems.